## **Densities of rational languages**

Dyadisc 8, Amiens

Valérie Berthé, Herman Goulet-Ouellet, Dominique Perrin 07.07.2025





Part 1

## Introduction

- 1. Introduce the notion of **density**.
- 2. Introduce **Green's relations** and the structure theory of semigroups.
- 3. Define **minimal 1**-**classes** associated with ergodic measures.
- 4. Sketch the proof of **existence of densities** of all rational languages under all invariant measures.

Let  $\mu$  be a (Borel) probability measure on  $A^{\mathbb{Z}}$ .

- We say that  $\mu$  is **invariant** if  $\mu(S^{-1}(B)) = \mu(B)$  for all Borel sets  $B \subseteq A^{\mathbb{Z}}$ .
- We say that  $\mu$  is **ergodic** if it is invariant and  $S^{-1}(B) = B \implies \mu(B) \in \{0, 1\}$  for all Borel sets B.

By Birkhoff's ergodic theorem, this is equivalent to convergence of **ergodic sums**:

$$\forall B, C, \quad \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mu(B \cap S^{-n}C) = \mu(B)\mu(C).$$

The support of an invariant probability measure is a shift space. If the measure is ergodic then the shift space is irreducible.

Let *X* be a shift space. We use the following notation for cylinders:

$$[u \cdot v]_X = \{ x \in X \mid x_{[-|u|,|v|)} = uv \}.$$

## **Notation**

Let  $\mu$  be a probability measure with support X and let  $w \in A^*$  and  $L \subseteq A^*$ . We write

$$\mu(w) = \mu([\varepsilon \cdot w]_X)$$
 and  $\mu(L) = \sum_{w \in L} \mu(w)$ .

Probability measures have the properties that  $\mu(\varepsilon) = 1$  and  $\mu(w) = \sum_{a \in A} \mu(wa)$ . If  $\mu$  is invariant then  $\mu(w) = \mu([w \cdot \varepsilon]_X) = \sum_{a \in A} \mu(aw)$ .

## Theorem (Michel, 1974)

For every primitive substitution  $\varphi$ , there is a unique ergodic measure supported on the shift space generated by  $\varphi$ .

Here are some simple examples of where Michel's theorem can be applied.

- 1.  $a \mapsto abc, b \mapsto abc, c \mapsto abc$  (three points example).
- 2.  $a \mapsto ab, b \mapsto a$  (Fibonacci).
- 3.  $a \mapsto ab, b \mapsto ba$  (Thue-Morse).
- 4.  $a \mapsto aab, b \mapsto acb, c \mapsto ba$ .

**Fibonacci** 



Fibonacci ergodic measure ( $\lambda = \text{golden ratio}$ )

The support of this measure is the **Fibonacci shift space**.

 $\sigma: a \mapsto ab, b \mapsto a,$  abaababaabaababaababa $\cdots$ 

Thue-Morse



THUE-MORSE ERGODIC MEASURE

The support of this measure is the **Thue–Morse shift space**.

 $\sigma$ :  $a \mapsto ab, b \mapsto ba$ , abbabaabbaababbabaab  $\cdots$ 

Part 2

# The notion of density

## **Definition (Berstel, 1972)**

Let  $\mu$  be a probability measure on  $A^{\mathbb{Z}}$  and  $L \subseteq A^*$ . The **density of** L **with respect to**  $\mu$  is the limit

$$\delta_{\mu}(L) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mu(L \cap A^{i}).$$

We say that the density exists in the **strong sense** if  $\lim_{n\to\infty} \mu(L\cap A^n)$  exists.

Our goal is to show that the density of a rational language exists for every invariant measure  $\mu$  and to calculate it effectively under some conditions.

The existence result is known when  $\mu$  is a **Bernoulli measure** (Berstel, 1972). We also considered recently the case of **group languages** (Berthé et al., 2024).

Let  $\mu$  be a probability measure of support  $X \subseteq A^{\mathbb{Z}}$ . Recall the definition of density:

$$\delta_{\mu}(L) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mu(L \cap A^{i}).$$

For every languages  $L, K \subseteq A^*$ , the following properties hold:

- 1.  $0 \le \delta_{\mu}(L) \le 1$ .
- 2.  $\delta_{\mu}(L) = \delta_{\mu}(L \cap \mathcal{L}(X))$ .
- 3.  $\delta_{\mu}(L \cup K) = \delta_{\mu}(L) + \delta_{\mu}(K)$  if  $L \cap K = \emptyset$ .
- 4.  $\delta_{\mu}(A^* \setminus L) = 1 \delta_{\mu}(L)$ .

$$x = (abc)^{\infty}, \quad \mu(x) = \mu(Sx) = \mu(S^2x) = \frac{1}{3}, \quad X = \{x, Sx, S^2x\},$$
  
 $L = \{w \in \{a, b, c\}^* \mid |w|_a + |w|_b \equiv 0 \mod 2\}.$ 

$$|abc|_a + |abc|_b \equiv 0 \qquad |bca|_a + |bca|_b \equiv 0 \qquad |cab|_a + |cab|_b \equiv 0 \qquad \mu(L \cap A^3) = 1$$

$$|abca|_a + |abca|_b \equiv 1 \qquad |bcab|_a + |bcab|_b \equiv 1 \qquad |cabc|_a + |cabc|_b \equiv 0 \qquad \mu(L \cap A^4) = \frac{1}{3}$$

$$|abcab|_a + |abcab|_b \equiv 0 \qquad |bcabc|_a + |bcabc|_b \equiv 1 \qquad |cabca|_a + |cabca|_b \equiv 1 \qquad \mu(L \cap A^5) = \frac{1}{3}$$

$$\delta_{\mu}(L) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mu(L \cap A^{i}) = \frac{1}{3} (1 + \frac{1}{3} + \frac{1}{3}) = \frac{5}{9}$$

$$\delta_{\mu}(L) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mu(L \cap A^i).$$

$$L_1 = \{ w \in A^* \mid |w| \equiv 0 \mod 2 \},$$
  
 $L_2 = \{ w \in A^* \mid |w| \equiv \lfloor \log_2(|w|) \rfloor \mod 2 \}.$ 



In this example  $\delta_{\mu}(L_1) = \delta_{\mu}(L_2) = 1/2$  but  $\delta_{\mu}(L_1 \cap L_2)$  does not exist (no matter  $\mu$ ).

Part 3

# **Density of ideals**

A language L is a **right ideal** if  $LA^* = L$ .

## **Proposition**

Let  $\mu$  be a probability measure on  $A^{\mathbb{Z}}$  and let  $L \subseteq A^*$  be a right ideal. Then  $\delta_{\mu}(wA^*)$  exists in the strong sense and

$$\delta_{\mu}(L) = \mu(L \setminus LA^+).$$

 $L \setminus LA^+$  is the unique prefix code D such that  $L = DA^*$ .

In particular for every  $w \in A^*$  the set  $wA^*$  is a right ideal and  $\delta_{\mu}(wA^*) = \mu(w)$ .

A language *L* is a **left ideal** if  $A^*L = L$ .

## **Proposition**

Let  $\mu$  be a probability measure on  $A^{\mathbb{Z}}$  and let  $L \subseteq A^*$  be a left ideal. If  $\mu$  is invariant then  $\delta_{\mu}(L)$  exists in the strong sense and

$$\delta_{\mu}(L) = \mu(L \setminus A^+L).$$

 $L \setminus A^+L$  is the unique suffix code G such that  $L = GA^*$ .

In particular for every  $w \in A^*$  the set  $A^*w$  is a left ideal and  $\delta_{\mu}(wA^*) = \mu(w)$ , provided  $\mu$  is invariant.

A quasi-ideal is the intersection of a left and a right ideal.

## **Proposition**

Let  $\mu$  be a probability measure on  $A^{\mathbb{Z}}$ , let  $L \subseteq A^*$  be a left ideal and let  $K \subseteq A^*$  be a right ideal. If  $\mu$  is ergodic then  $\delta_{\mu}(L \cap K)$  exists and

$$\delta_{\mu}(L \cap K) = \mu(u)\mu(v).$$

The proof uses the **convergence of ergodic sums** in a key way.

In particular if  $u, v \in A^*$  then  $A^*u \cap vA^*$  is a quasi-ideal and  $\delta_{\mu}(A^*u \cap vA^*) = \mu(u)\mu(v)$ , provided  $\mu$  is ergodic.

A language L is a **two-sided ideal** if  $A^*LA^* = L$ .

## **Theorem**

Let  $\mu$  be a probability measure on  $A^*$  and let  $w \in A^*$ . If  $\mu$  is ergodic then the density of every two-sided ideal exists in the strong sense and is equal to 0 or 1.

This follows from the formula for quasi-ideals. Set  $D = L \setminus LA^+$  and  $G = L \setminus A^+L$ . Then  $L = DA^* = A^*G = DA^* \cap A^*G$  and so

$$\delta_{\mu}(L) = \mu(G)\mu(D) = \delta_{\mu}(A^*G)\delta_{\mu}(DA^*) = \delta_{\mu}(L)^2.$$

Since  $\delta_{\mu}(L) \in [0, 1]$  the result follows.

In particular,  $\delta_{\mu}(L) = 1$  if  $\mu(w) > 0$  for some  $w \in L$  and 0 otherwise.

- 1. For right ideals,  $\delta_{\mu}(L) = \mu(L \setminus LA^{+})$  in the strong sense.
- 2. For left ideals,  $\delta_{\mu}(L) = \mu(L \setminus A^+L)$  in the strong sense, provided  $\mu$  is invariant.
- 3. For quasi-ideals,  $\delta_{\mu}(L) = \mu(G)\mu(D)$ , provided  $\mu$  is ergodic.
- 4. For two-sided ideals,  $\delta_{\mu}(L) \in \{0, 1\}$  in the strong sense if  $\mu$  is ergodic.

Part 4

## Finite monoids and Green's relations

The following is equivalent to the classical automatic definition.

### **Definition**

A language  $L \subseteq A^*$  is **rational** if there exists a finite monoid M, a morphism  $\varphi \colon A^* \to M$  and a subset  $K \subseteq M$  such that  $L = \varphi^{-1}(K)$ .

We say that the monoid M recognizes the language L.

- The transition function of an automaton  $\mathcal{A}$  with state set Q defines a morphism from  $A^*$  to a transformation monoid on Q recognizing the same languages as  $\mathcal{A}$ . We call this monoid the **transition monoid** of  $\mathcal{A}$ .
- Conversely, a morphism  $\varphi \colon A^* \to M$  determines an automaton  $\mathcal A$  with state set M recognizing the same languages as M.

$$\varphi \colon \{a,b\}^* \to \mathbb{Z}/m\mathbb{Z}, \qquad \varphi(a) = 1, \varphi(b) = 0,$$
$$\varphi^{-1}(0) = \{w \mid |w|_a \equiv 0 \bmod m\}.$$



$$\varphi \colon \{a, b, c\}^* \to S_3, \quad a \mapsto (1 \ 2 \ 3), b \mapsto (1 \ 2), c \mapsto (1 \ 2 \ 3)$$



$$\varphi \colon \{a,b\}^* \to M \leq \{0,1\}^{2\times 2}, \quad a \mapsto \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, b \mapsto \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$



(This is the transition monoid of the Rauzy graph of order 1 in the Fibonacci shift.)

## **Definition (Green, 1951)**

The four Green's relations on a monoid M are defined by

$$s \mathcal{R} t \iff sM = tM$$
  
 $s \mathcal{L} t \iff Ms = Mt$   
 $s \mathcal{H} t \iff sM = tM, Ms = Mt$   
 $s \mathcal{J} t \iff MsM = MtM$ 

So  $\mathcal R$  is equality of principal right ideals,  $\mathcal L$  of left ideals and  $\mathcal J$  of two-sided ideals. The relation  $\mathcal H$  is simply the intersection  $\mathcal L\cap\mathcal R$ .

We have the inclusions  $\mathcal{H} \subseteq \mathcal{L}, \mathcal{R} \subseteq \mathcal{J}$ .

## **Terminology**

Let M be a monoid.

- 1. A **subgroup** of *M* is a subsemigroup which is in fact a group. It does not necessarily share the same identity element.
- 2. An  $\mathcal{H}$ -class of M is called **regular** if it contains an idempotent ( $s^2 = s$ ).

## **Proposition (Green, 1951)**

Let M be a monoid.

- 1. Every subgroup of M is contained in a regular  $\mathcal{H}$ -class.
- 2. Every regular  $\mathcal{H}$ -class is a subgroup of M.
- 3. If  $\mathit{M}$  is finite, all regular  $\mathscr{H}$ -classes in the same  $\mathscr{J}$ -class are isomorphic as groups.

In finite monoids, an  $\mathcal{R}$ -class R and an  $\mathcal{L}$ -class L which are in the same  $\mathcal{J}$ -class have non-empty intersection, and this intersection is an  $\mathcal{H}$ -class.

We represent finite monoid using an **eggbox diagram**. The boxes are  $\mathcal{J}$ -classes, the rows are  $\mathcal{R}$ -classes, the columns are  $\mathcal{L}$ -classes, and the cells are  $\mathcal{H}$ -classes.

Asterisks in the upper right corner indicate the regular  $\mathcal{H}$ -classes.



Part 5

## J-classes associated with shift spaces

Let  $\varphi \colon A^* \to M$  be a morphism onto a finite monoid M. Let  $\mu$  be an ergodic measure and let X be its support.

## **Definition**

We denote by  $K_X(M)$  the intersection of all ideals of M which meet  $\varphi(\mathcal{L}(X))$ .

The minimal  $\mathcal{J}$ -class of M is the set

$$J_X(M) = \{ m \in K_X(M) \mid MmM \cap \varphi(\mathcal{L}(X)) \neq \emptyset \}.$$

- 1.  $J_X(M)$  is a regular  $\mathcal{J}$ -class.
- 2.  $J_X(M)$  contains all  $\leq_{\mathscr{J}}$ -minimal elements of  $\varphi(\mathcal{L}(X))$ .

If X is substitutive or sofic, then  $J_X(M)$  is computable for every finite monoid M.

Let M be the transition monoid of the automaton below on the left. The monoid has 11 elements, shown in the eggbox diagram on the right.



The minimal  $\mathcal{J}$ -class  $J_X(M)$ , where X is the Fibonacci shift space, is shown in yellow.

For the Thue–Morse shift space, the minimal  $\mathcal{J}$ -class is the set  $\{b^2, b^3\}$ . It is in fact the minimal ideal of M

Let *L* be the language recognized by the automaton below on the left. Let *M* be the transition monoid of this automaton.



| abc | a    | ab   |
|-----|------|------|
| bc  | bca* | b    |
| С   | са   | cab* |

Let X be the shift space  $\{(abc)^{\infty}, (bca)^{\infty}, (cab)^{\infty}\}$  with the uniform distribution  $\mu$ . The minimal  $\mathcal{J}$ -class  $J_X(M)$  is shown on the right. The areas in yellow indicate the elements of  $J_X(M)$  which are in the image of L.

## **Theorem**

Let  $\mu$  be a probability measure on  $A^{\mathbb{Z}}$  and let  $\varphi \colon A^* \to M$  be a morphism onto a finite monoid M. If  $\mu$  is ergodic then  $\delta_{\mu}(\varphi^{-1}(J_X(M))) = 1$  in the strong sense.

In particular,  $\delta_{\mu}(\varphi^{-1}(m)) = 0$  in the strong sense for all  $m \notin J_X(M)$ .

Indeed,  $J_X(M) \cap \varphi(\mathcal{L}(X)) = K_X(M) \cap \varphi(\mathcal{L}(X))$ , and by definition  $K_X(M)$  is a two-sided ideal which meets the image of  $\mathcal{L}(X)$ . Then, we can apply the zero-one law for two-sided ideals to conclude.

It follows from the theorem that  $\delta_{\mu}(L) = \delta_{\mu}(L')$  where  $L' = \{w \in L \mid \varphi(w) \in J_X(X)\}.$ 

A language *L* is **aperiodic** if it recognized by a monoid with only trivial subgroups. By a famous theorem of Schützenberger, those are exactly the star-free languages.

### **Theorem**

Let  $\mu$  be an ergodic measure on  $A^{\mathbb{Z}}$ . For every aperiodic language  $L \subseteq A^*$ , the density  $\delta_{\mu}(L)$  exists.

Let  $\varphi: A^* \to M$  be a morphism onto a finite aperiodic monoid. We may assume that  $L = \varphi^{-1}(m)$  for some  $m \in M$ .

- If  $m \notin J_X(M)$ , then  $\delta_{\mu}(L) = 0$  by concentration of the density on  $J_X(M)$ .
- If  $m \in J_X(M)$ , then we have  $L \cap \mathcal{L}(X) = LA^* \cap A^*L \cap \mathcal{L}(X)$  and therefore  $\delta_{\mu}(L) = \delta_{\mu}(LA^*)\delta_{\mu}(A^*L)$  by the formula for quasi-ideals.



| abc* | а    | ab   |
|------|------|------|
| bc   | bca* | b    |
| С    | са   | cab* |

In this example,  $\delta_{\mu}(\varphi^{-1}(m)) = \frac{1}{9}$  for each element  $m \in J_X(M)$ , therefore  $\delta_{\mu}(L) = \frac{5}{9}$ . Note that L has the same intersection with  $\mathcal{L}(X)$  as the non-aperiodic language

$$\{w \in A^* \mid |w|_{\partial} + |w|_{b} \equiv 0 \mod 2\}.$$

Consider the transition monoid M of the automaton below on the left, and let X be the Thue–Morse shift. The minimal  $\mathcal{J}$ -class  $J_X(M)$  is represented on the right.



| a <sup>2</sup>  | a²b              | $a^2b^2$ * |
|-----------------|------------------|------------|
| ba <sup>2</sup> | ba²b *           | ab²        |
| $b^2a^2$ *      | b <sup>2</sup> a | $b^2$      |

Using the previous theorem, we can calculate that the density of the language  $L = \{ab, ba\}^*$  under the Thue–Morse ergodic measure is  $\delta_{\mu}(L) = \frac{1}{4}$ .

Indeed, one has  $LA^*=(ab)^*\cup(ba)^*\cup((ab)^+b\cup(ba)^+a)A^*$ , from which we can deduce that  $\delta_\mu(LA^*)=\mu(abb,ababb,baa,babaa)=\frac{1}{2}$ . Then  $\delta_\mu(A^*L)=\frac{1}{2}$  for similar reasons, and  $\delta_\mu(L)=\delta_\mu(A^*L)\delta_\mu(LA^*)=\frac{1}{4}$ .

. .

## **Existence theorem**

Part 6

Main result

#### **Existence Theorem**

Let  $\mu$  be an invariant measure on  $A^{\mathbb{Z}}$ . Then every rational language on A has a density with respect to  $\mu$ .

We fix a morphism  $\varphi \colon A^* \to M$  onto a finite monoid M. The proof has three steps.

- STEP 1 Use the **ergodic decomposition theorem** to reduce to the ergodic case.
- STEP 2 Define a **skew product**  $(R \cup \{0\}) \times X$ , where R is an  $\mathcal{R}$ -class of  $J_X(M)$ .
- Step 3 Find an **ergodic lift** of  $\mu$  on  $(R \cup \{0\}) \times X$ .
- STEP 4 Express the density as **ergodic sums** in the skew product.

We will present details for step 2 and 4.

Let  $\varphi \colon A^* \to M$  be a morphism onto a finite monoid M. Let  $\mu$  be an ergodic measure with support X. Let R be an  $\Re$ -class of  $J_X(M)$  such that  $R \cap \varphi(\mathcal{L}(X)) \neq \emptyset$ .

### **Definition**

In our setting, the **skew product** with the  $\Re$ -class R is the dynamical system formed by  $(R \cup \{0\}) \times X$  with the continuous transformation T defined by

$$T(r,x) = (r \cdot \varphi(x_0), Sx)$$

where  $r \cdot m = rm$  if  $rm \in R$  and 0 otherwise.

If M = G is a group, then R = G and we can get rid of 0 in the skew product.

The skew product is a model for walks in the natural automaton over the chosen  $\mathcal{R}$ -class. The orbit under T of (r, x) correspond to an infinite walk starting at r.

| ab, (ab) <sup>2</sup> * | a,aba      |
|-------------------------|------------|
| b, bab                  | ba,(ba)² * |

 $\mathcal{R}$ -class of  $J_X(M)$  (in yellow).



Automaton on the  $\mathcal{R}$ -class.

ab aba 
$$(ab)^2$$
 a a ab aba  $(ab)^2$  a a ab ab a b a ab a ...

- By step 1, we may assume that  $\mu$  is ergodic.
- By step 3, we may consider an ergodic lift  $\bar{\mu}$  of  $\mu$ .

The Existence Theorem follows from the proposition below.

## **Proposition**

For every  $m \in M$ , we have  $\delta_{\mu}(\varphi^{-1}(m)) = 0$  if  $m \notin J_X(M)$ , and otherwise:

$$\delta_{\mu}(L) = \sum_{r,rm \in R} \bar{\mu}(\{r\} \times [L]_X) \, \bar{\mu}(\{rm\} \times X).$$

The key to this proposition is the fact that for  $m \in J_X(M)$ , the density of  $\varphi^{-1}(m)$  can be rewritten as an **ergodic sum in the skew product** with respect to the lifted measure  $\bar{\mu}$ .

A candidate for an ergodic lift of  $\mu$  to the skew product is the following measure.

### **Definition**

The **weighted counting measure** on  $(R \cup \{0\}) \times X$  is the probability measure v defined by defined by  $v(\{0\} \times X) = 0$  and for  $r \in R$  and  $u, v \in \mathcal{L}(X)$ :

$$v(\lbrace r\rbrace \times [u\cdot v]_X) = \sum_{s\in R, \, s\varphi(u)=r} \frac{1}{d}\mu(G_s v)$$

where  $G_s$  is the suffix code such that  $\varphi^{-1}(Ms) = A^*G_s$  and d is the cardinality of the  $\mathcal{H}$ -classes of  $J_X(M)$ .

The weighted counting measure is an invariant lift of  $\mu$ . When M is a group G, the weighted counting measure is the product of the counting measure on G with  $\mu$ .

Let  $\varphi \colon A^* \to M$  be a morphism onto a finite monoid M and let  $\mu$  be an ergodic measure with support X. We say that  $\varphi$  is **equidistributed** if for all  $m \in J_X(M)$ ,

$$\delta_{\mu}(\varphi^{-1}(m)) = \frac{1}{d}\delta_{\mu}(A^*\varphi^{-1}(m))\delta_{\mu}(\varphi^{-1}(m)A^*)$$

where d is the cadinality of  $\mathcal{H}$ -classes of  $J_X(M)$ .

This means that the densities are uniform within the  $\mathcal{H}$ -classes of  $J_X(M)$ .

#### **Theorem**

If the weighted counting measure is ergodic, then  $\varphi$  has equidistibuted densities.

This generalizes a result for the group case from Berthé et al., 2024.

#### **Theorem**

Let X be a substitutive dendric shift. Let  $\mu$  be the unique ergodic measure on X. For every morphism  $\varphi\colon A^*\to G$  onto a finite group G, the weighted counting measure on  $G\times X$  is ergodic.

Therefore, if X is a substitutive dendric shift and  $\varphi \colon A^* \to M$  is a group morphism, then  $\varphi$  has equidistributed densities.

Question: can we extend this beyond the substitutive case, or beyond the group case?

Let M be the transition monoid of the automaton below on the left. On the right we find the minimal  $\mathcal{J}$ -class  $J_X(M)$ , where X is the Fibonacci shift.



In this example, the weighted counting measure is ergodic.

The density of each  $\mathcal{H}$ -class is given in the upper left corner ( $\lambda = \frac{1+\sqrt{5}}{2}$ ). These densities are then evenly distributed among the elements of the  $\mathcal{H}$ -class.

## Some directions for future research:

- properties of weighted counting measures;
- equidistribution properties;
- · cocycles and cobounding maps;
- · relationship with return words;
- induced measures on profinite monoids.

A quick demo if I have time:

https://d0l.kam.fit.cvut.cz/