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Part 1

Introduction



Outline 1/37

1. Introduce the notion of density.

2. Introduce Green’s relations and the structure theory of semigroups.

3. Define minimalJ-classes associated with ergodic measures.

4. Sketch the proof of existence of densities of all rational languages under all
invariant measures.



Probability measures on shift spaces 2/37

Let μ be a (Borel) probability measure on AZ.

• We say that μ is invariant if μ(S−1(B)) = μ(B) for all Borel sets B ⊆ AZ.

• We say that μ is ergodic if it is invariant and S−1(B) = B =⇒ μ(B) ∈ {0,1} for all
Borel sets B.

By Birkhoff’s ergodic theorem, this is equivalent to convergence of ergodic sums:

∀B,C, lim
n→∞

1
n

n−1∑
i=0

μ(B ∩ S−nC) = μ(B)μ(C).

The support of an invariant probability measure is a shift space. If the measure is
ergodic then the shift space is irreducible.



Cylinders and probability measures 3/37

Let X be a shift space. We use the following notation for cylinders:

[u · v]X = {x ∈ X | x[−|u|,|v|) = uv}.

Notation
Let μ be a probability measure with support X and let w ∈ A∗ and L ⊆ A∗. We write

μ(w) = μ([ε · w]X) and μ(L) =
∑
w∈L

μ(w).

Probability measures have the properties that μ(ε) = 1 and μ(w) =
∑

a∈A μ(wa).

If μ is invariant then μ(w) = μ([w · ε]X) =
∑

a∈A μ(aw).



Michel’s theorem 4/37

Theorem (Michel, 1974)
For every primitive substitution φ, there is a unique ergodic measure supported on
the shift space generated by φ.

Here are some simple examples of where Michel’s theorem can be applied.

1. a 7→ abc,b 7→ abc, c 7→ abc (three points example).

2. a 7→ ab,b 7→ a (Fibonacci).

3. a 7→ ab,b 7→ ba (Thue–Morse).

4. a 7→ aab,b 7→ acb, c 7→ ba.



Fibonacci 5/37
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FIBONACCI ERGODIC MEASURE (λ = golden ratio)

The support of this measure is the Fibonacci shift space.

σ : a 7→ ab,b 7→ a, abaababaabaababaababa · · ·



Thue–Morse 6/37
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THUE–MORSE ERGODIC MEASURE

The support of this measure is the Thue–Morse shift space.

σ : a 7→ ab,b 7→ ba, abbabaabbaababbabaab · · ·



Part 2

The notion of density



Density of a rational language 7/37

Definition (Berstel, 1972)

Let μ be a probability measure on AZ and L ⊆ A∗. The density of L with respect to μ is
the limit

δμ(L) = lim
n→∞

1
n

n−1∑
i=0

μ(L ∩ Ai).

We say that the density exists in the strong sense if lim
n→∞

μ(L ∩ An) exists.

Our goal is to show that the density of a rational language exists for every invariant
measure μ and to calculate it effectively under some conditions.

The existence result is known when μ is a Bernoulli measure (Berstel, 1972). We also
considered recently the case of group languages (Berthé et al., 2024).



Basic properties 8/37

Let μ be a probability measure of support X ⊆ AZ. Recall the definition of density:

δμ(L) = lim
n→∞

1
n

n−1∑
i=0

μ(L ∩ Ai).

For every languages L,K ⊆ A∗, the following properties hold:

1. 0 ≤ δμ(L) ≤ 1.

2. δμ(L) = δμ(L ∩ L(X)).
3. δμ(L ∪ K) = δμ(L) + δμ(K) if L ∩ K = ∅.

4. δμ(A∗ \ L) = 1 − δμ(L).



Three points example 9/37

x = (abc)∞, μ(x) = μ(Sx) = μ(S2x) = 1
3 , X = {x,Sx,S2x},

L = {w ∈ {a,b, c}∗ | |w|a + |w|b ≡ 0 mod 2}.

|abc|a + |abc|b ≡ 0 |bca|a + |bca|b ≡ 0 |cab|a + |cab|b ≡ 0 μ(L ∩ A3) = 1

|abca|a + |abca|b ≡ 1 |bcab|a + |bcab|b ≡ 1 |cabc|a + |cabc|b ≡ 0 μ(L ∩ A4) = 1
3

|abcab|a + |abcab|b ≡ 0 |bcabc|a + |bcabc|b ≡ 1 |cabca|a + |cabca|b ≡ 1 μ(L ∩ A5) = 1
3

δμ(L) = lim
n→∞

1
n

n−1∑
i=0

μ(L ∩ Ai) = 1
3 (1 + 1

3 + 1
3 ) =

5
9



The problem of existence 10/37

δμ(L) = lim
n→∞

1
n

n−1∑
i=0

μ(L ∩ Ai).

L1 = {w ∈ A∗ | |w| ≡ 0 mod 2},
L2 = {w ∈ A∗ | |w| ≡ blog2(|w|)c mod 2}.

L1
1 2 4

. . .

8 16

even even even even

L2
1 2 4 8 16

. . .
even odd even odd

. . .

. . .

In this example δμ(L1) = δμ(L2) = 1/2 but δμ(L1 ∩ L2) does not exist (no matter μ).



Part 3

Density of ideals



Density of right ideals 11/37

Definition
A language L is a right ideal if LA∗ = L.

Proposition

Let μ be a probability measure on AZ and let L ⊆ A∗ be a right ideal. Then δμ(wA∗)

exists in the strong sense and

δμ(L) = μ(L \ LA+).

L \ LA+ is the unique prefix code D such that L = DA∗.

In particular for every w ∈ A∗ the set wA∗ is a right ideal and δμ(wA∗) = μ(w).



Density of left ideals 12/37

Definition
A language L is a left ideal if A∗L = L.

Proposition

Let μ be a probability measure on AZ and let L ⊆ A∗ be a left ideal. If μ is invariant
then δμ(L) exists in the strong sense and

δμ(L) = μ(L \ A+L).

L \ A+L is the unique suffix code G such that L = GA∗.

In particular for every w ∈ A∗ the set A∗w is a left ideal and δμ(wA∗) = μ(w), provided
μ is invariant.



Quasi-ideals 13/37

Definition
A quasi-ideal is the intersection of a left and a right ideal.

Proposition

Let μ be a probability measure on AZ, let L ⊆ A∗ be a left ideal and let K ⊆ A∗ be a
right ideal. If μ is ergodic then δμ(L ∩ K) exists and

δμ(L ∩ K) = μ(u)μ(v).

The proof uses the convergence of ergodic sums in a key way.

In particular if u, v ∈ A∗ then A∗u ∩ vA∗ is a quasi-ideal and δμ(A∗u ∩ vA∗) = μ(u)μ(v),
provided μ is ergodic.



Zero-one law for two-sided ideals 14/37

Definition
A language L is a two-sided ideal if A∗LA∗ = L.

Theorem
Let μ be a probability measure on A∗ and let w ∈ A∗. If μ is ergodic then the density
of every two-sided ideal exists in the strong sense and is equal to 0 or 1.

This follows from the formula for quasi-ideals. Set D = L \ LA+ and G = L \ A+L. Then
L = DA∗ = A∗G = DA∗ ∩ A∗G and so

δμ(L) = μ(G)μ(D) = δμ(A∗G)δμ(DA∗) = δμ(L)2.

Since δμ(L) ∈ [0,1] the result follows.

In particular, δμ(L) = 1 if μ(w) > 0 for some w ∈ L and 0 otherwise.



Recap 15/37

1. For right ideals, δμ(L) = μ(L \ LA+) in the strong sense.

2. For left ideals, δμ(L) = μ(L \ A+L) in the strong sense, provided μ is invariant.

3. For quasi-ideals, δμ(L) = μ(G)μ(D), provided μ is ergodic.

4. For two-sided ideals, δμ(L) ∈ {0,1} in the strong sense if μ is ergodic.



Part 4

Finite monoids and Green’s relations



The algebraic definition of rational languages 16/37

The following is equivalent to the classical automatic definition.

Definition
A language L ⊆ A∗ is rational if there exists a finite monoid M, a morphism φ : A∗ → M
and a subset K ⊆ M such that L = φ−1(K).

We say that the monoid M recognizes the language L.

• The transition function of an automaton A with state set Q defines a morphism
from A∗ to a transformation monoid on Q recognizing the same languages as A.
We call this monoid the transition monoid of A.

• Conversely, a morphism φ : A∗ → M determines an automaton A with state set M
recognizing the same languages as M.



Modular letter counting 17/37

φ : {a,b}∗ → Z/mZ, φ(a) = 1, φ(b) = 0,

φ−1(0) = {w | |w|a ≡ 0 mod m}.

0

1 2

a

a

a

b

b b



Automaton on the symmetric group 18/37

φ : {a,b, c}∗ → S3, a 7→ (1 2 3),b 7→ (1 2), c 7→ (1 2 3)

id (1 2)

(1 3)

(2 3)(1 2 3)

(1 3 2)

a, c
a, c

a, c a, c
a, c

a, c

b

b

b



Automaton on 0-1 matrices 19/37

φ : {a,b}∗ → M ≤ {0,1}2×2, a 7→
(

1 0
1 0

)
,b 7→

(
0 1
0 0

)

( 1 0
0 1 ) ( 0 0

0 0 )

( 1 0
1 0 )

( 1 0
0 0 )

( 0 1
0 1 )

( 0 1
0 0 )

a

a
b

b
a

b

a
b

a

b

a,b

(This is the transition monoid of the Rauzy graph of order 1 in the Fibonacci shift.)



Green’s relations 20/37

Definition (Green, 1951)
The four Green’s relations on a monoid M are defined by

s R t ⇐⇒ sM = tM

s L t ⇐⇒ Ms = Mt

s H t ⇐⇒ sM = tM,Ms = Mt

sJ t ⇐⇒ MsM = MtM

So R is equality of principal right ideals, L of left ideals andJ of two-sided ideals. The
relation H is simply the intersection L ∩ R.

We have the inclusions H ⊆ L,R ⊆J.



Locating subgroups 21/37

Terminology
Let M be a monoid.

1. A subgroup of M is a subsemigroup which is in fact a group. It does not
necessarily share the same identity element.

2. An H-class of M is called regular if it contains an idempotent (s2 = s).

Proposition (Green, 1951)
Let M be a monoid.

1. Every subgroup of M is contained in a regular H-class.

2. Every regular H-class is a subgroup of M.

3. If M is finite, all regular H-classes in the sameJ-class are isomorphic as groups.



Eggbox diagrams 22/37

In finite monoids, an R-class R and an L-class L which are in the sameJ-class have
non-empty intersection, and this intersection is an H-class.

We represent finite monoid using an eggbox diagram. The boxes areJ-classes, the
rows are R-classes, the columns are L-classes, and the cells are H-classes.

Asterisks in the upper right corner indicate the regular H-classes.

1 2 3

4 5 6 aa

aa
b

a

b

b

bb
a

b

1
∗

ab, (ab)2 a, aba

b,bab ba, (ba)2

∗ ∗

∗

b2,b3∗



Part 5

J-classes associated with shift spaces



The minimalJ-class 23/37

Let φ : A∗ → M be a morphism onto a finite monoid M. Let μ be an ergodic measure
and let X be its support.

Definition
We denote by KX(M) the intersection of all ideals of M which meet φ(L(X)).

The minimalJ-class of M is the set

JX(M) = {m ∈ KX(M) | MmM ∩ φ(L(X)) 6= ∅}.

1. JX(M) is a regularJ-class.

2. JX(M) contains all ≤J-minimal elements of φ(L(X)).

If X is substitutive or sofic, then JX(M) is computable for every finite monoid M.



Example of minimal J-class 24/37

Let M be the transition monoid of the automaton below on the left. The monoid has 11
elements, shown in the eggbox diagram on the right.

1 2 3

4 5 6 aa

aa
b

a

b

b

bb
a

b

1
∗

ab, (ab)2 a, aba

b,bab ba, (ba)2

∗ ∗

∗

b2,b3∗

The minimalJ-class JX(M), where X is the Fibonacci shift space, is shown in yellow.

For the Thue–Morse shift space, the minimalJ-class is the set {b2,b3}. It is in fact the
minimal ideal of M.



Three points example 25/37

Let L be the language recognized by the automaton below on the left. Let M be the
transition monoid of this automaton.

12

3

4

a

b

c
c

a

b

abc a ab

bc bca b

c ca cab

∗

∗

∗

Let X be the shift space {(abc)∞, (bca)∞, (cab)∞} with the uniform distribution μ. The
minimalJ-class JX(M) is shown on the right. The areas in yellow indicate the
elements of JX(M) which are in the image of L.



Concentration of density 26/37

Theorem

Let μ be a probability measure on AZ and let φ : A∗ → M be a morphism onto a finite
monoid M. If μ is ergodic then δμ(φ

−1(JX(M))) = 1 in the strong sense.

In particular, δμ(φ
−1(m)) = 0 in the strong sense for all m /∈ JX(M).

Indeed, JX(M) ∩ φ(L(X)) = KX(M) ∩ φ(L(X)), and by definition KX(M) is a two-sided ideal
which meets the image of L(X). Then, we can apply the zero-one law for two-sided
ideals to conclude.

It follows from the theorem that δμ(L) = δμ(L′) where L′ = {w ∈ L | φ(w) ∈ JX(X)}.



Density of aperiodic languages 27/37

A language L is aperiodic if it recognized by a monoid with only trivial subgroups. By a
famous theorem of Schützenberger, those are exactly the star-free languages.

Theorem

Let μ be an ergodic measure on AZ. For every aperiodic language L ⊆ A∗, the density
δμ(L) exists.

Let φ : A∗ → M be a morphism onto a finite aperiodic monoid. We may assume that
L = φ−1(m) for some m ∈ M.

• If m /∈ JX(M), then δμ(L) = 0 by concentration of the density on JX(M).

• If m ∈ JX(M), then we have L ∩ L(X) = LA∗ ∩ A∗L ∩ L(X) and therefore
δμ(L) = δμ(LA∗)δμ(A∗L) by the formula for quasi-ideals.



Three points example 28/37
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∗
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In this example, δμ(φ
−1(m)) = 1

9 for each element m ∈ JX(M), therefore δμ(L) = 5
9 .

Note that L has the same intersection with L(X) as the non-aperiodic language

{w ∈ A∗ | |w|a + |w|b ≡ 0 mod 2}.



Example 29/37

Consider the transition monoid M of the automaton below on the left, and let X be the
Thue–Morse shift. The minimalJ-class JX(M) is represented on the right.

3 1 2

a

bb

a a2 a2b a2b2

ba2 ba2b ab2

b2a2 b2a b2

∗

∗

∗

Using the previous theorem, we can calculate that the density of the language
L = {ab,ba}∗ under the Thue–Morse ergodic measure is δμ(L) = 1

4 .

Indeed, one has LA∗ = (ab)∗ ∪ (ba)∗ ∪ ((ab)+b ∪ (ba)+a)A∗, from which we can deduce
that δμ(LA∗) = μ(abb,ababb,baa,babaa) = 1

2 . Then δμ(A∗L) = 1
2 for similar reasons,

and δμ(L) = δμ(A∗L)δμ(LA∗) = 1
4 .



Part 6

Existence theorem



Main result 30/37

Existence Theorem

Let μ be an invariant measure on AZ. Then every rational language on A has a density
with respect to μ.

We fix a morphism φ : A∗ → M onto a finite monoid M. The proof has three steps.

STEP 1 Use the ergodic decomposition theorem to reduce to the ergodic case.

STEP 2 Define a skew product (R ∪ {0})× X, where R is an R-class of JX(M).

STEP 3 Find an ergodic lift of μ on (R ∪ {0})× X.

STEP 4 Express the density as ergodic sums in the skew product.

We will present details for step 2 and 4.



Step 2: The skew product 31/37

Let φ : A∗ → M be a morphism onto a finite monoid M. Let μ be an ergodic measure
with support X. Let R be an R-class of JX(M) such that R ∩ φ(L(X)) 6= ∅.

Definition
In our setting, the skew product with the R-class R is the dynamical system formed
by (R ∪ {0})× X with the continuous transformation T defined by

T(r, x) = (r · φ(x0),Sx)

where r · m = rm if rm ∈ R and 0 otherwise.

If M = G is a group, then R = G and we can get rid of 0 in the skew product.



Example 32/37

The skew product is a model for walks in the natural automaton over the chosen
R-class. The orbit under T of (r, x) correspond to an infinite walk starting at r.

ab, (ab)2 a,aba

b,bab ba, (ba)2

∗ ∗

∗

ab

(ab)2

a

aba

a

a

a

a

b

b

R-class of JX(M) (in yellow). Automaton on the R-class.

a

ab

b

aba

a

(ab)2

a

a

b

a

a

ab

b

aba

a

(ab)2

a

a

b

a

a

ab

. . .



Step 4: Density as ergodic sums 33/37

• By step 1, we may assume that μ is ergodic.

• By step 3, we may consider an ergodic lift μ̄ of μ.

The Existence Theorem follows from the proposition below.

Proposition

For every m ∈ M, we have δμ(φ
−1(m)) = 0 if m /∈ JX(M), and otherwise:

δμ(L) =
∑

r,rm∈R

μ̄({r} × [L]X) μ̄({rm} × X).

The key to this proposition is the fact that for m ∈ JX(M), the density of φ−1(m) can be
rewritten as an ergodic sum in the skew product with respect to the lifted measure μ̄.



The weighted counting measure 34/37

A candidate for an ergodic lift of μ to the skew product is the following measure.

Definition
The weighted counting measure on (R ∪ {0})× X is the probability measure ν
defined by defined by ν({0} × X) = 0 and for r ∈ R and u, v ∈ L(X):

ν({r} × [u · v]X) =
∑

s∈R, sφ(u)=r

1
d

μ(Gsv)

where Gs is the suffix code such that φ−1(Ms) = A∗Gs and d is the cardinality of the
H-classes of JX(M).

The weighted counting measure is an invariant lift of μ. When M is a group G, the
weighted counting measure is the product of the counting measure on G with μ.



Equidistributed densities 35/37

Definition
Let φ : A∗ → M be a morphism onto a finite monoid M and let μ be an ergodic
measure with support X. We say that φ is equidistributed if for all m ∈ JX(M),

δμ(φ
−1(m)) =

1
d

δμ(A∗φ−1(m))δμ(φ
−1(m)A∗)

where d is the cadinality of H-classes of JX(M).

This means that the densities are uniform within the H-classes of JX(M).

Theorem
If the weighted counting measure is ergodic, then φ has equidistibuted densities.

This generalizes a result for the group case from Berthé et al., 2024.



The dendric case 36/37

Theorem
Let X be a substitutive dendric shift. Let μ be the unique ergodic measure on X. For
every morphism φ : A∗ → G onto a finite group G, the weighted counting measure on
G × X is ergodic.

Therefore, if X is a substitutive dendric shift and φ : A∗ → M is a group morphism, then
φ has equidistributed densities.

Question: can we extend this beyond the substitutive case, or beyond the group case?



One last example 37/37

Let M be the transition monoid of the automaton below on the left. On the right we
find the minimalJ-class JX(M), where X is the Fibonacci shift.

1 2

3

b

a

a

ba

a,a2 ab,a2b

ba,ba2 b,bab

∗ ∗

∗

λ−2 λ−3

λ−3 λ−4

In this example, the weighted counting measure is ergodic.

The density of each H-class is given in the upper left corner (λ = 1+
√

5
2 ). These

densities are then evenly distributed among the elements of the H-class.



Some directions for future research:

• properties of weighted counting measures;

• equidistribution properties;

• cocycles and cobounding maps;

• relationship with return words;

• induced measures on profinite monoids.

A quick demo if I have time:

https://d0l.kam.fit.cvut.cz/

https://d0l.kam.fit.cvut.cz/
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