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Part 1

Introduction



Outline 1/37

—

. Introduce the notion of density.
Introduce Green's relations and the structure theory of semigroups.

Define minimal §-classes associated with ergodic measures.

W N

Sketch the proof of existence of densities of all rational languages under all
invariant measures.



Probability measures on shift spaces 2137

Let u be a (Borel) probability measure on AZ.

+ We say that y is invariant if u(S~"(B)) = u(B) for all Borel sets B C AZ.
- We say that y is ergodic if it is invariant and S~ (B) = B = u(B) € {0,1} for all
Borel sets B.
By Birkhoff's ergodic theorem, this is equivalent to convergence of ergodic sums:

n—1

T .
VB, C, nIL@OE;u(BHS C) = u(B)u(C).

The support of an invariant probability measure is a shift space. If the measure is
ergodic then the shift space is irreducible.



Cylinders and probability measures 3/37

Let X be a shift space. We use the following notation for cylinders:

[u . V]X = {X eX | X[=|ul,|v]) = UV}.

Notation
Let u be a probability measure with support Xand let w € A* and L C A*. We write

p(w) = u(le-wlx) and p(l) = u(w).

wel

Probability measures have the properties that u(e) = 1 and p(w) = > ., u(wa).

If uis invariant then p(w) = p([w - €lx) = > cq H(a@aw).



Michel's theorem 437

Theorem (Michel, 1974)

For every primitive substitution ¢, there is a unique ergodic measure supported on
the shift space generated by .

Here are some simple examples of where Michel's theorem can be applied.

1. a— abc,b — abc,c — abc (three points example).
2. a+ ab,b +— a (Fibonacci).

3. a~ ab,b— ba(Thue—Morse).

4

. a—aab,b — acb,c— ba.



Fibonacci 5/37
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FIBONACCI ERGODIC MEASURE (A = golden ratio)

The support of this measure is the Fibonacci shift space.

0o:aw—ab,b— a, abaababaabaababaababa - - -



Thue—Morse 6/37

N=
o=

/b

wl=

7
T

wl=

o=

L

THUE—MORSE ERGODIC MEASURE

The support of this measure is the Thue—Morse shift space.

0o:aw— ab,b— ba, abbabaabbaababbabaab - - -



Part 2

The notion of density



Density of a rational language 7137

Definition (Berstel, 1972)
Let u be a probability measure on AZ and L C A*. The density of L with respect to p is

the limit
n—1

. 1 ;
ou(l) = Jim - z;u(L nA.
=
We say that the density exists in the strong sense if lim p(LNA") exists.
n—o0

Our goal is to show that the density of a rational language exists for every invariant
measure u and to calculate it effectively under some conditions.

The existence resultis known when p is a Bernoulli measure (Berstel, 1972). We also
considered recently the case of group languages (Berthé et al., 2024).



Basic properties 8/37

Let u be a probability measure of support X C AZ. Recall the definition of density:

n—1

. ;
ou(l) = nl|_>rgo p z;u(L nA".
=l

For every languages L, K C A*, the following properties hold:

1.0<6,(L) < 1.

2. 5,(L) = 86,(LN L(X)).

3. 85,(LUK) = 6,(L) + 6,(K)ifLNK = 2.
4. 8,(A*\ L) =1—6,(L).



Three points example 9/37

x = (abc)™, p(x)=p(Sx) =p(S°x) =1, X={x,5x,5x},
L={we{a,b,c}*||wls+ |w|p =0 mod 2}.

labcl|s + |abcl, =0 |bcals + |bcalp =0 |cabls + |cabl, =0 u(L N A%

—

|abcals + |abcalp =1 |bcabls + |bcablp =1 |cabc|a + |cabclp =0 u(L N A%

W= wl=

labcabls + |abcablp =0 |bcabcls + |bcabcl, =1 |cabcals + |cabcalp =1 u(L N A%

B = _
ou(l) = Jim =3 p(LnA) =30 +3+3)=3
i=0



The problem of existence 10/37

n—1

. -
ou(l) = lim p Zu(L NnA".
i=0

L={weA"||lw|/=0 mod 2},
Ly ={weA*"||w|=|logy(]w])] mod 2}.

even even even even
Ly : : : ] -
1 2 4 8 16
even _ odd - even odd -
Lo 1 1 1 T 1 -
1 2 4 8 16

In this example 5,(L1) = &,(L2) = 1/2 but 5,(Ly NL;) does not exist (no matter p).



Part 3

Density of ideals



Density of right ideals 11/37

Definition
A language Lis a rightideal if LA* = L.

Proposition
Let u be a probability measure on A% and let L C A* be a right ideal. Then Ou(WA*)
exists in the strong sense and

5y(L) = (L \ LA®).

L\ LA* is the unique prefix code D such that L = DA*.

In particular for every w € A* the set wA* is a right ideal and 5,(wA*) = u(w).



Density of left ideals 12/37

Definition
Alanguage Lis a leftideal if A*L = L.
Proposition

Let u be a probability measure on A% and let L C A* be a left ideal. If i is invariant
then 6,(L) exists in the strong sense and

8u(L) = (L \ A*L).

L\ ATLis the unique suffix code G such that L = GA*.

In particular for every w € A* the set A*w is a left ideal and 6,(wA*) = u(w), provided
U is invariant.



Quasi-ideals 13/37

Definition
A quasi-ideal is the intersection of a left and a right ideal.

Proposition

Let u be a probability measure on A%, let L C A* be a left ideal and let K C A* be a
right ideal. If 1 is ergodic then &, (L N K) exists and

Su(LNK) = p(u)u(v).

The proof uses the convergence of ergodic sums in a key way.

In particularif u,v € A* then A*u N vA* is a quasi-ideal and &,(A*u N vA*) = u(u)u(v),
provided p is ergodic.



Zero-one law for two-sided ideals 14/37

Definition
Alanguage L is a two-sided ideal if A*LA* = L.

Theorem
Let y be a probability measure on A* and let w € A*. If u is ergodic then the density
of every two-sided ideal exists in the strong sense and is equal to O or 1.

This follows from the formula for quasi-ideals. Set D = L\ LAt and G = L\ ATL. Then
L =DA* = A*G = DA*NA*G and so

5u(L) = B(G)u(D) = 6,(A"G)5,(DA%) = 5,(L)’.

Since 6,(L) € [0, 1] the result follows.

In particular, 6,(L) = 1if y(w) > 0 for some w € L and O otherwise.



Recap 15/37

For right ideals, ,(L) = p(L \ LAT) in the strong sense.

For leftideals, 5,(L) = pu(L \ A*L) in the strong sense, provided p is invariant.
For quasi-ideals, ,(L) = u(G)u(D), provided u is ergodic.

For two-sided ideals, (L) € {0, 1} in the strong sense if  is ergodic.

> w =



Part 4

Finite monoids and Green's relations



The algebraic definition of rational languages 16/37

The following is equivalent to the classical automatic definition.

Definition

Alanguage L C A* is rational if there exists a finite monoid M, a morphism ¢: A* - M
and a subset K C M such that L = ¢~ '(K).

We say that the monoid M recognizes the language L.

- The transition function of an automaton A with state set Q defines a morphism
from A* to a transformation monoid on Q recognizing the same languages as A.
We call this monoid the transition monoid of A.

« Conversely, a morphism ¢: A* — M determines an automaton A with state set M
recognizing the same languages as M.



Modular letter counting 17/37

P {avb}*_)Z/mZ’ @(3)21#([3):07
¢ '(0) = {w | |w|, = 0 mod m}.

b
0
(o)




Automaton on the symmetric group 18/37

p:{a,b,c}*—=S3, a—(123),b—(12),c—(123)




Automaton on 0-1 matrices 19/37

p:{a,b}" > M<{0,1}*% a (18).b~ (85)

(This is the transition monoid of the Rauzy graph of order 1 in the Fibonacci shift.)



Green's relations 20/37

Definition (Green, 1951)
The four Green's relations on a monoid M are defined by

SRt < sM=tM

sLt < Ms=Mt

s#Ht <— sM=tM,Ms =Mt
s §t < MsM=MtM

So % is equality of principal right ideals, &£ of left ideals and ¢ of two-sided ideals. The
relation #€ is simply the intersection £ NR.

We have the inclusions #/ C £, % C ¢.



Locating subgroups 21/37

Terminology
Let M be a monoid.

1. A subgroup of Mis a subsemigroup which is in fact a group. It does not
necessarily share the same identity element.

2. An #€-class of M is called regular if it contains an idempotent (s = s).

Proposition (Green, 1951)

Let M be a monoid.

1. Every subgroup of Mis contained in a regular #€-class.
2. Every regular #€-class is a subgroup of M.

3. If Mis finite, all regular #€-classes in the same ¢-class are isomorphic as groups.



Eggbox diagrams 22/37

In finite monoids, an % -class R and an £-class L which are in the same ¢-class have
non-empty intersection, and this intersection is an #-class.

We represent finite monoid using an eggbox diagram. The boxes are ¢-classes, the
rows are % -classes, the columns are £-classes, and the cells are #-classes.

Asterisks in the upper right corner indicate the regular #€-classes.

ab,(ab)?"| a,aba
b,bab | ba,(ba)?"

a4 5 6
T




Part 5

J-classes associated with shift spaces



The minimal ¢-class 23/37

Let o: A* -+ M be a morphism onto a finite monoid M. Let uy be an ergodic measure
and let X be its support.

Definition
We denote by Kx(M) the intersection of all ideals of M which meet p(L(X)).

The minimal ¢-class of M is the set

Ix(M) = {m € Kx(M) | MmM 0 p(L(X)) # 0}

1. Jx(M) is a regular ¢-class.
2. Jx(M) contains all < g-minimal elements of p(L(X)).

If X is substitutive or sofic, then Jx(M) is computable for every finite monoid M.



Example of minimal J-class 24/37

Let M be the transition monoid of the automaton below on the left. The monoid has 11
elements, shown in the eggbox diagram on the right.

b
3

(2)

2 ab,(ab)?"| a,aba
a b,bab | ba,(ba)?
©),

b

The minimal ¢-class Jx(M), where X is the Fibonacci shift space, is shown in yellow.

For the Thue—Morse shift space, the minimal #-class is the set {b?,b3}. Itis in fact the
minimal ideal of M.



Three points example 25/37

Let L be the language recognized by the automaton below on the left. Let M be the
transition monoid of this automaton.

*
abc| a ab

*
bc | bca b

*
c ca | cab

Let X be the shift space {(abc)*>°, (bca)>, (cab)>} with the uniform distribution p. The
minimal §-class Jx(M) is shown on the right. The areas in yellow indicate the
elements of Jx(M) which are in the image of L.



Concentration of density 26/37

Theorem

Let u be a probability measure on AZ and let p: A* = M be a morphism onto a finite
monoid M. If p is ergodic then &,(p~ "' (Jx(M))) = 1 in the strong sense.

In particular, 6,(¢~'(m)) = 0 in the strong sense for all m ¢ Jy(M).
Indeed, Jx(M) N (L(X)) = Kx(M) N p(L(X)), and by definition Kx(M) is a two-sided ideal

which meets the image of £(X). Then, we can apply the zero-one law for two-sided
ideals to conclude.

It follows from the theorem that 6,(L) = 5,(L") where I’ = {w € L | p(w) € Jx(X)}.



Density of aperiodic languages 27/37

Alanguage L is aperiodic if it recognized by a monoid with only trivial subgroups. By a
famous theorem of Schitzenberger, those are exactly the star-free languages.

Theorem

Let u be an ergodic measure on AZ. For every aperiodic language L C A*, the density
o, (L) exists.

Let p: A* — M be a morphism onto a finite aperiodic monoid. We may assume that
L=¢ '(m)forsomeme M.

« If m ¢ Jx(M), then 5,(L) = O by concentration of the density on Jx(M).

« If m € Jx(M), then we have LN L(X) = LA* N A*LN L(X) and therefore
6,(L) = 6, (LA*)5,(A*L) by the formula for quasi-ideals.



Three points example 28/37

abc| a ab
bc bca* b

c ca | cab

In this example, 5,(¢~'(m)) = § for each element m € Jx(M), therefore 5,(L) = 2.

Note that L has the same intersection with £(X) as the non-aperiodic language

{weA" | |w|, +|w|p =0 mod 2}.



Example 29/37

Consider the transition monoid M of the automaton below on the left, and let X be the
Thue—Morse shift. The minimal ¢-class Jx(M) is represented on the right.

a a a’ a’b a?p?
b b p?a? ¥ b?a b2

Using the previous theorem, we can calculate that the density of the language

L = {ab, ba}* under the Thue—Morse ergodic measure is 5,(L) = 1.

Indeed, one has LA* = (ab)* U (ba)* U ((ab)*b U (ba)*ta)A*, from which we can deduce
that 6, (LA*) = u(abb,ababb, baa, babaa) = 3. Then §,(A*L) = 5 for similar reasons,
and 8, (L) = 6,(A*L)8,(LA™) = 1.



Part 6

Existence theorem



Main result 30/37

Existence Theorem

Let u be an invariant measure on AZ Then every rational language on A has a density
with respect to p.

We fix a morphism ¢: A* — M onto a finite monoid M. The proof has three steps.

STEP 1 Use the ergodic decomposition theorem to reduce to the ergodic case.
Step 2 Define a skew product (R U {0}) x X, where R is an % -class of Jx(M).
Step 3 Find an ergodic lift of y on (RU{0}) x X.

STEP 4 Express the density as ergodic sums in the skew product.

We will present details for step 2 and 4.



Step 2: The skew product 31/37

Let p: A* - M be a morphism onto a finite monoid M. Let y be an ergodic measure
with support X. Let R be an % -class of Jx(M) such that RN p(L(X)) # 2.

Definition
In our setting, the skew product with the % -class R is the dynamical system formed
by (R U {0}) x X with the continuous transformation T defined by

T(I’,X) = (f' QD(Xo),SX)
wherer-m =rm ifrm € R and O otherwise.

If M= Gisagroup,then R = G and we can get rid of O in the skew product.



Example 32/37

The skew product is a model for walks in the natural automaton over the chosen
9% -class. The orbit under T of (r, x) correspond to an infinite walk starting at r.

k *k

ab, (ab)? a,aba

*

b, bab ba, (ba)?

% -class of Jx(M) (in yellow). Automaton on the %-class.

ab aba (ab)? a a ab aba (ab)? a a ab

a b a a b a b a a b a



Step 4: Density as ergodic sums 33/37

+ By step 1, we may assume that u is ergodic.
+ By step 3, we may consider an ergodic lift o of p.
The Existence Theorem follows from the proposition below.

Proposition
For every m € M, we have 6,(¢~'(m)) = 0if m ¢ Jx(M), and otherwise:

Su(l) = D B({r} x [Lhx) A({rm} x X).

r,ymeRr

The key to this proposition is the fact that for m € Jx(M), the density of ¢='(m) can be
rewritten as an ergodic sum in the skew product with respect to the lifted measure [.



The weighted counting measure 34/37

A candidate for an ergodic lift of py to the skew productis the following measure.
Definition
The weighted counting measure on (R U {0}) x X is the probability measure v
defined by defined by v({0} x X) =0and forr € Rand u,v € L(X):

i<l = Y Zu(G)
SER, sp(u)=r

where G is the suffix code such that ¢~'(Ms) = A*Gs and d is the cardinality of the
H€-classes of Jx(M).

The weighted counting measure is an invariant lift of y. When Mis a group G, the
weighted counting measure is the product of the counting measure on G with p.



Equidistributed densities 35/37

Definition
Let p: A* - M be a morphism onto a finite monoid M and let u be an ergodic
measure with support X. We say that ¢ is equidistributed if for all m € Jx(M),

5ule™ (M) = Z8,(A"0™ (M5~ (M)A")

where d is the cadinality of #¢-classes of Jx(M).

This means that the densities are uniform within the ¥¢-classes of Jx(M).

Theorem
If the weighted counting measure is ergodic, then ¢ has equidistibuted densities.

This generalizes a result for the group case from Berthé et al., 2024.



The dendric case 36/37

Theorem

Let X be a substitutive dendric shift. Let uy be the unique ergodic measure on X. For

every morphism ¢: A* — G onto a finite group G, the weighted counting measure on
G x Xis ergodic.

Therefore, if X'is a substitutive dendric shiftand ¢: A* — Mis a group morphism, then
 has equidistributed densities.

Question: can we extend this beyond the substitutive case, or beyond the group case?



One last example

Let M be the transition monoid of the automaton below on the left. On the right we
find the minimal ¢-class Jx(M), where X is the Fibonacci shift.

*

a A2 A3

e @ | T |
}\73 * )\74

a © b ba, ba? b, bab

In this example, the weighted counting measure is ergodic.

The density of each #¢-class is given in the upper left corner (A = %). These
densities are then evenly distributed among the elements of the #¢-class.



Some directions for future research:

properties of weighted counting measures;
equidistribution properties;

cocycles and cobounding maps;
relationship with return words;

induced measures on profinite monoids.

A quick demo if | have time:

https://dOl.kam.fit.cvut.cz/


https://d0l.kam.fit.cvut.cz/
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