Partial rigidity on S-adic subshifts

Dyadisc 8: Approximations of Symbolic Systems UPJV, Amiens, France

Tristán Radić

Northwestern University

Joint work with A. Maass and S. Donoso.

Definition (X, \mathcal{X}, μ, T) is partially rigid if there exists $\delta > 0$ and a sequence $(N_n)_{n \in \mathbb{N}}$ such that

$$\liminf_{n\to\infty} \mu(A\cap \mathcal{T}^{-N_n}A) \geq \delta\mu(A) \quad \text{ for all } \quad A\in\mathcal{X}$$

- $(N_n)_{n\in\mathbb{N}}$ is a partial rigidity sequence.
- δ is a constant of partial rigidity ($\delta > \gamma > 0$ is another constant of partial rigidity).

Special case: The system is **rigid** whenever $\delta=1$, in that case

$$\lim_{n\to\infty}\mu(A\cap \mathcal{T}^{-N_n}A)=\mu(A)\quad \text{ for all }\quad A\in\mathcal{X}.$$

Facts: Partially rigid systems are

- not mixing,
- zero entropy (Bruin, Karpel, Oprocha and Radinger 2025).

Examples:

- Equicontinuous systems are rigid
- Substitution subshifts are partially rigid (Dekking 1978)
- Interval exchanges transformations are partially rigid (Katok 1980)
- Linearly recurrent subshifts are partially rigid (Cortez, Durand, Host, Maass, 2003)
- Cantor sytems of finite exact rank are partially rigid (Bezuglyi, Kwiatkowski, Medynets and Solomyak 2013 - Danilenko 2016)
- Non-superlinear complexity subshifts are partially rigid (Creutz 2022) this include the rest of the cases

How to characterize partial rigidity?

- \mathcal{T}_i are towers
- B_i are the **bases** of \mathcal{T}_i
- $\bigcup \mathcal{T}_i = X$.

- \mathcal{T}_i are towers
- B_i are the **bases** of \mathcal{T}_i
- $\bigcup \mathcal{T}_i = X$.

- \mathcal{T}_i are towers
- B_i are the **bases** of T_i
- $\bigcup \mathcal{T}_i = X$.

- \mathcal{T}_i are towers
- B_i are the **bases** of T_i
- $\bigcup \mathcal{T}_i = X$.

- \mathcal{T}_i are towers
- B_i are the **bases** of \mathcal{T}_i
- $\bigcup \mathcal{T}_i = X$.

• • •

- B_i are the **bases** of \mathcal{T}_i
- $\bigcup \mathcal{T}_i = X$.

- \mathcal{T}_i are towers
- B_i are the **bases** of T_i
- $\bigcup \mathcal{T}_i = X$.

- \mathcal{T}_i are towers
- B_i are the **bases** of \mathcal{T}_i
- $\bigcup \mathcal{T}_i = X$.

Partial rigidity is a notion of recurrence and it is captured by the complete return words.

- Take a finite alphabet A (e.g. $A = \{a, b, c\}$)
- $w = w_1 w_2 \cdots w_\ell \in A^*$ is a complete return word if $w_1 = w_\ell$ (e.g. w = abca or w = bccbab).

With this words we define sub-towers.

Theorem (Danilenko 2016) Let (X, \mathcal{X}, μ, T) be an ergodic system and $(\mathcal{P}^{(n)})_{n \in \mathbb{N}}$ be a sequence of Kakutani-Roklin partition of X such that

- (I) $\mathcal{P}^{(n)} = \{\mathcal{T}_1^{(n)}, \mathcal{T}_2^{(n)}, \dots, \mathcal{T}_{m_n}^{(n)}\},\$
- (II) for all $i \in \{1,\ldots,m_{n+1}\}$ there exists $j \in \{1,\ldots,m_n\}$ such that $B_i^{(n+1)} \subset B_j^{(n)}$
- (III) the collection $\bigcup_{n\in\mathbb{N}} \mathcal{P}^{(n)}$ generates \mathcal{X} .

If there exists a constant $\delta>0$ and a sequence of **complete return words** $(w(n)\in\{1,\ldots,m_n\}^*)_{n\in\mathbb{N}}$ such that

$$\limsup_{n\to\infty}\mu(\mathcal{T}_{w(n)}^{(n)})\geq\delta$$

then (X, \mathcal{X}, μ, T) is partially rigid.

Theorem (Donoso, Mass, R. 2025) Let (X, \mathcal{X}, μ, T) be an ergodic system and $(\mathcal{P}^{(n)})_{n \in \mathbb{N}}$ be a sequence of Kakutani-Roklin partition of X that fulfills (I), (II) and (III).

 (X, \mathcal{X}, μ, T) is partially rigid if and only if there exists a constant $\delta > 0$ and a sequence of **complete return words** $(w(n) \in \{1, \dots, m_n\}^*)_{n \in \mathbb{N}}$ such that

$$\limsup_{n\to\infty} \mu\left(\bigcup_{u\sim w(n)} \mathcal{T}_u^{(n)}\right) \geq \delta. \tag{1}$$

Here two complete words $u=u_1u_2\cdots u_{\ell-1}u_\ell, w=w_1w_2\cdots w_{r-1}w_r$ are equivalent $(u\sim w)$ if

$$h_{u_1}^{(n)} + h_{u_2}^{(n)} + \dots + h_{u_{\ell-1}}^{(n)} = h_{w_1}^{(n)} + h_{w_2}^{(n)} + \dots + h_{w_{r-1}}^{(n)}$$

where $h_i^{(n)}$ the hight of $\mathcal{T}_i^{(n)}$.

Remark 1: The constant $\delta > 0$ in (1) is a partial rigidity constant for μ .

Remark 2: The sequence of partial rigidity $(N_n)_{n\in\mathbb{N}}$ is given by $N_n = h_{u_1}^{(n)} + h_{u_2}^{(n)} + \cdots + h_{u_{|u|-1}}^{(n)}$ for some $u \sim w(n)$.

Applications to S-adic subshift

- Consider A, a finite alphabet, A* the set of (finite) words over A,
- $\sigma: A^* \to B^*$ is a morphism if it is a morphism for the concatenation that is

$$\sigma(w_1w_2\cdots w_\ell)=\sigma(w_1)\sigma(w_2)\cdots\sigma(w_\ell)$$

for $w_1, \ldots, w_\ell \in A$.

• A sequence of morphisms $\sigma = (\sigma_n \colon A_{n+1}^* \to A_n^*)_{n \in \mathbb{N}}$ is called a *directive sequence*.

$$\sigma = \left| \begin{array}{c} \vdots \\ A_3^* \\ \downarrow^{\sigma_2} \\ A_2^* \\ \downarrow^{\sigma_1} \\ A_1^* \\ \downarrow^{\sigma_0} \\ A_0^* \end{array} \right|$$

We assume σ will be *primitive* and *recognizable*.

$$\sigma = \begin{vmatrix} \vdots \\ A_3^* \\ \downarrow^{\sigma_2} \\ A_2^* \\ \downarrow^{\sigma_1} \\ A_1^* \\ \downarrow^{\sigma_0} \\ A_0^* \end{vmatrix}$$

• Fixing n,

$$\mathcal{L}^{(n)}(\sigma)=\{w\in A_n^*\mid w \text{ appears in } \sigma_{[n,N)}(a) \text{ for } N>n, a\in A_N\}$$
 where $\sigma_{[n,N)}(a)=\sigma_n\circ\cdots\circ\sigma_{N-1}(a)$ and

$$X_{\sigma}^{(n)} = \{x \in A_n^{\mathbb{Z}} \mid \text{ every finite word of } x \text{ is in } \mathcal{L}^{(n)}(\sigma)\}.$$

• The S-adic subshift given by σ is $X_{\sigma}^{(0)} = X_{\sigma}$

Special case: If $\sigma \equiv \sigma \colon A^* \to A^* \ X_{\sigma}$ is a substitution subshift,

Example: Thue-Morse substitution:

$$\begin{array}{l} 0 \mapsto 01 \\ 1 \mapsto 10 \end{array}$$

The elements of X_{σ} locally look like,

(c) Tristán Radić

Assume $\sigma = (\sigma_n \colon A_{n+1}^* \to A_n^*)_{n \in \mathbb{N}}$ is of finite rank, that is

$$\liminf_{n\to\infty}|A_n|<\infty$$

Proposition If a positive morphism τ appears infinitely many times in σ then X_{σ} is partially rigid for its unique invariant measure.

Def. $\tau: A^* \to B^*$ is positive if all letters $b \in B$ appear in $\tau(a)$ for all $a \in A$.

Proposition If exists c>0 such that $\max_{a\in A_n}|\sigma_{[0,n)}(a)|\leq c\min_{a\in A_n}|\sigma_{[0,n)}(a)|$ for all $n\in\mathbb{N}$, then X_{σ} is partially rigid for all invariant measures.

Corollary Finite rank constant length S-adic subshift, that is

$$|\sigma_n(a)| = |\sigma_n(b)|$$
 for all $n \in \mathbb{N}$, $a, b \in A_{n+1}$,

are partially rigid.

A morphism $\sigma: A^* \to B^*$ is ℓ -consecutive if, for all $a \in A$, $\sigma(a) = b_1^{\ell_1} b_2^{\ell_2} \cdots b_k^{\ell_k}$ with $\ell_i > \ell$ for all $i = 1, \dots, k$.

Proposition If σ is finite rank and σ_n is ℓ -consecutive for infinitely many $n \in \mathbb{N}$ then X_{σ} is partially rigid for all invariant measures.

Proposition If σ is constant-length and σ_n is ℓ -consecutive for infinitely many $n \in \mathbb{N}$ then X_{σ} is partially rigid for all invariant measures. Moreover the constant of partial rigidity is at least $\frac{\ell-1}{\ell}$.

Corollary If σ is constant-length and for all $\ell \geq 2$ there is $n \in \mathbb{N}$ such that σ_n is ℓ -consecutive then X_{σ} is rigid for all invariant measures.

Proposition If σ is constant-length and σ_n is ℓ -consecutive for infinitely many $n \in \mathbb{N}$ then X_{σ} is partially rigid for all invariant measures. Moreover the constant of partial rigidity is at least $\frac{\ell-1}{\ell}$.

Proof: WLOG all $\sigma_n \colon A_{n+1}^* \to A_n^*$ are ℓ -consecutive. Consider

$$\mathcal{P}^{(n)} = \{S^k \sigma_{[0,n)}([a]) : a \in A_n, 0 \le k < |\sigma_{[0,n)}(a)|\}.$$

- Take $a \in A_{n+1}$, $\sigma_n(a) = b_1^{\ell_1} b_2^{\ell_2} \cdots b_k^{\ell_k}$ consider $b \in A_n$ such that $b = b_i$ for at least one $1 \le i \le k$.
- Denote $r = \#\{i \mid b = b_i\}$. By ℓ -consecutive, $\ell_i \geq \ell$ and

$$\frac{|\sigma_n(a)|_b - |\sigma_n(a)|_{bb}}{|\sigma_n(a)|_b} = \frac{r}{\sum_{i:\ b=b_i} \ell_i} \le \frac{r}{r\ell} = \frac{1}{\ell}.$$

where $|w|_u = \#u$ appears in w. Thus

$$\mu(\mathcal{T}_{bb}^{(n)} \cap \mathcal{T}_{a}^{(n+1)}) \geq \frac{|\sigma_{n}(a)|_{bb}}{|\sigma_{n}(a)|_{b}} \mu(\mathcal{T}_{b}^{(n)} \cap \mathcal{T}_{a}^{(n+1)}) \geq \frac{\ell-1}{\ell} \mu(\mathcal{T}_{b}^{(n)} \cap \mathcal{T}_{a}^{(n+1)}).$$

Proposition If σ is constant-length and σ_n is ℓ -consecutive for infinitely many $n \in \mathbb{N}$ then X_{σ} is partially rigid for all invariant measures. Moreover the constant of partial rigidity is at least $\frac{\ell-1}{\ell}$.

Proof:

• Thus summing over A_{n+1}

$$\mu(\mathcal{T}_{bb}^{(n)}) = \sum_{a \in A_{n+1}} \mu(\mathcal{T}_{bb}^{(n)} \cap \mathcal{T}_{a}^{(n+1)}) \geq \frac{\ell-1}{\ell} \sum_{a \in A_{n+1}} \mu(\mathcal{T}_{b}^{(n)} \cap \mathcal{T}_{a}^{(n+1)}) = \frac{\ell-1}{\ell} \mu(\mathcal{T}_{b}^{(n)}).$$

• By constant length constant lengths, for every $b_1, b_2 \in A_n$, $b_1b_1 \sim b_2b_2$.

$$\mu\left(\bigcup_{b\in A_n}\mathcal{T}_{bb}^{(n)}\right) = \sum_{b\in A_n}\mu(\mathcal{T}_{bb}^{(n)}) \geq \frac{\ell-1}{\ell}\sum_{b\in A_n}\mu(\mathcal{T}_b^{(n)}) = \frac{\ell-1}{\ell}$$

Proposition Let (X, S) be a **linearly recurrent** subshift and let μ be its unique invariant measure. If (X, \mathcal{B}, μ, S) is **rigid**, then

$$\limsup_{n \to \infty} \frac{q(n)}{p(n)} = 1 \tag{2}$$

where

- p(n) = # words of length n in X,
- q(n) = # complete return words of length n in X.

Proposition If (X, S) is a **constant length substitution** subshift, then rigidity is equivalent to (2).

Partial rigidity rate

Definition

$$\delta_{\mu}(T) = \sup\{\delta > 0 \mid \delta \text{ is a constant of partial rigidity}\}$$

is the partial rigidity rate.

Sometime we just write δ_{μ} .

Proposition For (X, \mathcal{X}, μ, T) and (Y, \mathcal{Y}, ν, S)

- If X and Y are isomorphic then $\delta_{\mu}(T) = \delta_{\nu}(S)$
- If $\pi: X \to Y$ a factor $\delta_{\mu}(T) \le \delta_{\nu}(S)$
- $\bullet \ \delta_{\mu \times \mu}(T \times T) = (\delta_{\mu}(T))^2$

Recall:

Theorem Let (X, \mathcal{X}, μ, T) be an ergodic system and $(\mathcal{P}^{(n)})_{n \in \mathbb{N}}$ be a sequence of Kakutani-Roklin partition of X that fulfills (I), (II) and (III).

 (X, \mathcal{X}, μ, T) is **partially rigid** if and only if there exists a constant $\delta > 0$ and a sequence of **complete return words** $(w(n) \in \{1, \dots, m_n\}^*)_{n \in \mathbb{N}}$ such that

$$\limsup_{n\to\infty}\mu\left(\bigcup_{u\sim w(n)}\mathcal{T}_u^{(n)}\right)\geq\delta.$$

Now:

Theorem Under the same hypothesis, there exists a sequence of **complete** return words $(w(n) \in \{1, ..., m_n\}^*)_{n \in \mathbb{N}}$ such that

$$\delta_{\mu}(T) = \lim_{n \to \infty} \mu \left(\bigcup_{u \sim w(n)} \mathcal{T}_{u}^{(n)} \right)$$
 (3)

Corollary Let $\sigma:A^*\to A^*$ be a constant-length substitution and μ the unique invariant measure of $X_\sigma.$

$$\delta_{\mu} = \sup_{\ell \geq 2} \left\{ \sum_{w: |w|=\ell, w_1=w_\ell} \mu(w) \right\}.$$

Proposition For the Thue-Morse substitution subshift:

$$\delta_{\mu}=\frac{2}{3}$$

with partial rigidity sequence $(3 \cdot 2^n)_{n \in \mathbb{N}}$.

Proposition For $L \ge 6$, let $\zeta_L : \{a, b\}^* \to \{a, b\}^*$ be the substitution given by

$$\zeta_L(a) = ab^{L-1}$$

 $\zeta_L(b) = ba^{L-1}$,

then for the invariant measure of the substitution subshift X_{ζ_l}

$$\delta_{\mu} = \frac{L-1}{L+1}$$

with partial rigidity sequence $(L^n)_{n\in\mathbb{N}}$.

Corollary For every $\delta \in (0,1]$ there is a measure preserving system $(X,\mathcal{X},\mu,\mathcal{T})$ such that $\delta = \delta_{\mu}(\mathcal{T})$.

System with $0 < \delta_{\mu_0} < \ldots < \delta_{\mu_{d-1}} < 1$

Proposition Let $\sigma=(\sigma_n\colon A_{n+1}^*\to A_n^*)_{n\in\mathbb{N}}$ be a constant length directive sequence. Let μ be an ergodic measure on X_σ . Then

$$\delta_{\mu^{(n)}} = \delta_{\mu} \quad \text{ for all } n \in \mathbb{N}$$

where $\mu^{(n)}$ is the corresponding invariant measure in $X_{\sigma}^{(n)}$.

Idea: for a constant length $\mathcal{S}\text{-adic}$ subshift and μ ergodic measure,

- $\bullet \;\; \mbox{if we know} \; \delta_{\mu^{(5)}} \; \mbox{we know} \; \delta_{\mu} \mbox{,}$
- if we know δ_{μ} we know δ_{μ} ,
- $\bullet \;\; \mbox{if we know} \; \delta_{\mu^{(10000)}} \; \mbox{we know} \; \delta_{\mu} \mbox{,}$
- if we know δ_{μ} ???? we know δ_{μ} .

Construction Take the alphabet $A = \{a, b, 0, 1\}$. Let $\kappa: A^* \to A^*$ be the function (not morphism) such that $u \in A^*$,

$$\kappa(ua) = u0$$
 $\kappa(ub) = u1$ $\kappa(u0) = ua$ and $\kappa(u1) = ub$

Consider $\zeta_6 \colon \{a,b\}^* \to \{a,b\}^*$ and $\zeta_{36} \colon \{0,1\}^* \to \{0,1\}^*$

$$\zeta_6(a) = aaaaab \quad \zeta_6(b) = bbbbba$$

 $\zeta_{36}(0) = 0^{35}1 \quad \zeta_{36}(1) = 1^{35}0.$

Define $\sigma_n \colon A^* \to A^*$ be given by

$$\sigma_n(a) = \kappa(\zeta_6^{2n}(a))$$

$$\sigma_n(b) = \kappa(\zeta_6^{2n}(b))$$

$$\sigma_n(0) = \kappa(\zeta_{36}^{n}(0))$$

$$\sigma_n(1) = \kappa(\zeta_{36}^{n}(1)).$$

Remark σ_n is of constant-length with $|\sigma_n| = 36^n$.

The idea is to "glue" systems for which we know the partial rigidity rate.

Take $\sigma_n \colon A^* \to A^*$ with

$$\sigma_n(a) = \kappa(\zeta_6^{2n}(a))$$

$$\sigma_n(b) = \kappa(\zeta_6^{2n}(b))$$

$$\sigma_n(0) = \kappa(\zeta_{36}^{n}(0))$$

$$\sigma_n(1) = \kappa(\zeta_{36}^{n}(1)).$$

Theorem (R. 2025) For $\sigma = (\sigma_n \colon A^* \to A^*)_{n \in \mathbb{N}}$, then (X_{σ}, S) has two ergodic measure $\{\mu_1, \mu_2\}$ such that

$$\begin{split} \delta_{\mu_1} &= \frac{6-1}{6+1} \\ \delta_{\mu_2} &= \frac{36-1}{36+1} \end{split}$$

Moreover, the partial rigidity sequence associated to δ_{μ_1} and δ_{μ_2} are equal.

This strategy can be done for $d \ge 2$ measures using $\{a_1, b_1, a_2, b_2, \dots, a_d, b_d\}$ as alphabet.

Open problems

Open problems

- Is the condition $\limsup_{n\to\infty}\frac{q(n)}{p(n)}=1$ necessary/equivalent to rigidity for a larger family of systems?
- Rigidity for Pisot substitution (ask in Bruin, Karpel, Oprocha, Radinger 2025)
- For every zero entropy Cantor system find an orbit equivalent system that has at least one partially rigid measure (ask in BKOR 2025). Already known for constant-length S-adic subshift and for finite topological rank.
- Characterize or compute the partial rigidity rate of some systems of interest.
 Similarly construct an algorithm to compute it for some special cases.
- Is $\Delta := \{\delta_{\mathfrak{u}} \mid (X, \mathcal{X}, \mu, T) \text{ is ergodic } \} = [0, 1]$?
- Is $\Delta_s := \{\delta_{\mu} \mid \text{for substitutions }\}\ \text{dense in }[0,1]?$
- Construct a minimal system (X,T) with distinct partial rigidity rates $\delta_{\mu_1} < \ldots < \delta_{\mu_d}$ that is weakly-mixing for all measures.
- Find a uniquely ergodic system (X, T) with $\delta_{\mu}(T) \notin \mathbb{Q}$.

Merci!