Random Pisot substitutions and their Rauzy fractals

Dan Rust

Open University

Substitutions

- A finite alphabet
- $\theta: \mathcal{A} \to \mathcal{A}^+$ substitution
- All substitutions have a fixed point f(w) = w
- $(M_{\theta})_{ij} := |\theta(a_j)|_{a_i}$ substitution matrix

Substitutions

- A finite alphabet
- $\theta: \mathcal{A} \to \mathcal{A}^+$ substitution
- All substitutions have a fixed point f(w) = w
- $(M_{\theta})_{ij} := |\theta(a_j)|_{a_i}$ substitution matrix

Example:

- τ : $a \mapsto ab$, $b \mapsto ac$, $c \mapsto a$
- $a \mapsto ab \mapsto abac \mapsto abacaba \mapsto \cdots$
- w = abacabaabacababacabaabacabaab · · ·

$$M_{ au} = egin{pmatrix} 1 & 1 & 1 \ 1 & 0 & 0 \ 0 & 1 & 0 \end{pmatrix}$$

The Substitution Matrix

If there is $k \ge 1$ such that $M_{\theta}^k > 0$, we call θ *primitive*

Perron–Frobenius \implies exists unique simple real eigenvalue $\lambda_{PF}>1$ with eigenvector ${f R}>0, \quad$ also $\lambda_{PF}>|\lambda'|$

Entries of R give the *frequencies* of letters in fixed point

The Substitution Matrix

If there is $k \ge 1$ such that $M_{\theta}^k > 0$, we call θ *primitive*

Perron–Frobenius \implies exists unique simple real eigenvalue $\lambda_{PF}>1$ with eigenvector ${f R}>0$, also $\lambda_{PF}>|\lambda'|$

Entries of R give the frequencies of letters in fixed point

Tribonacci:

$$M_{\tau}^{3} = \begin{pmatrix} 4 & 3 & 2 \\ 2 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \quad \lambda = \lambda_{PF} \simeq 1.839 \quad \lambda^{3} - \lambda^{2} - \lambda - 1 = 0$$

$$\mathbf{R} = (\lambda^{-1}, \lambda^{-2}, \lambda^{-3})^T \simeq (0.544, 0.296, 0.161)^T$$

Pisot Substitutions

We say that a substitution is *Pisot* if λ_{PF} is a Pisot number, and *irreducible* if $\deg \lambda_{PF} = \# \mathcal{A}$

Fact: A substitution is irreducible Pisot if and only if for all $\lambda' \neq \lambda_{PF}$

$$0<|\lambda'|<1$$

Pisot Substitutions

We say that a substitution is *Pisot* if λ_{PF} is a Pisot number, and *irreducible* if $\deg \lambda_{PF} = \# \mathcal{A}$

Fact: A substitution is irreducible Pisot if and only if for all $\lambda' \neq \lambda_{PF}$

$$0<|\lambda'|<1$$

All the non-PF eigenvectors span a codimension-1 subspace H, which we call the *contracting hyperplane*

We construct a geometric object on H called the Rauzy fractal

C-balancedness and Rauzy fractals

Let w be an infinite word with well-defined letter-frequencies \mathbf{R}_i

Then w is C-balanced (on letters) or has bounded discrepancy if there is a C > 0 such that for all subwords u,

$$||u|_{a_i}-\mathbf{R}_i|u||\leq C$$

I.e., number of a_i s in u never deviates more than C from expected number

C-balancedness and Rauzy fractals

Let w be an infinite word with well-defined letter-frequencies \mathbf{R}_i

Then w is C-balanced (on letters) or has bounded discrepancy if there is a C > 0 such that for all subwords u,

$$||u|_{a_i}-\mathbf{R}_i|u||\leq C$$

I.e., number of a_i s in u never deviates more than C from expected number

Notation: $[u] = (|u|_{a_1}, \dots, |u|_{a_d})$ is the abelianisation of the word u

If w is C-balanced, then the lattice vectors

$$[w_1], [w_1w_2], [w_1w_2w_3], \dots$$

all remain within a bounded neighbourhood of the ray spanned by the frequency vector ${\bf R}$

4□ > 4@ > 4 = > 4 = > = 99°

Fibonacci staircase

Tribonacci staircase

[Shamelessly stolen from wikipedia]

Fact

All irreducible Pisot substitutions are C-balanced

Define

$$\mathcal{R}(\theta) = \mathcal{R}(w) := \overline{\{\operatorname{proj}_H(w_{[0,n]}) \mid n \geq 0\}},$$

the Rauzy fractal of w.

$$\tau \colon \left\{ \begin{array}{l} a \mapsto ab \\ b \mapsto ac \\ c \mapsto a \end{array} \right.$$

$$\tilde{\tau} : \left\{ \begin{array}{ccc} a & \mapsto & ba \\ b & \mapsto & ac \\ c & \mapsto & a \end{array} \right.$$

$$\tau \colon \left\{ \begin{array}{ll} a & \mapsto & ab \\ b & \mapsto & ac \\ c & \mapsto & a \end{array} \right.$$

$$\tilde{\tau} : \left\{ \begin{array}{ccc} a & \mapsto & ba \\ b & \mapsto & ac \\ c & \mapsto & a \end{array} \right.$$

Tribonacci

Twisted Tribonaci

Rauzy fractals

 $\mathcal{R}(\theta)$ is a compact subset of \mathbb{R}^{d-1} equal to closure of its interior. Always contains an open ball. Not always simply connected or even connected.

 $\mathcal{R}(heta)$ is the unique attractor of a GIFS that you can read off from heta

Rauzy fractals

 $\mathcal{R}(\theta)$ is a compact subset of \mathbb{R}^{d-1} equal to closure of its interior. Always contains an open ball. Not always simply connected or even connected.

 $\mathcal{R}(heta)$ is the unique attractor of a GIFS that you can read off from heta

Tribonacci:

$$au$$
: $a \mapsto ab, \ b \mapsto ac, \ c \mapsto a$
$$\mathcal{R}(\tau) = \mathcal{R}_a \cup \mathcal{R}_b \cup \mathcal{R}_c$$

$$\mathcal{R}_a = h(\mathcal{R}_a) \cup h(\mathcal{R}_b) \cup h(\mathcal{R}_c), \quad \mathcal{R}_b = h(\mathcal{R}_a) + \mathbf{v}_a, \quad \mathcal{R}_c = h(\mathcal{R}_b) + \mathbf{v}_a$$

$$h := \operatorname{proj}_{H}(M), \ \mathbf{v}_{a} := \operatorname{proj}_{H}(e_{a}), \ \mathbf{v}_{b} := \operatorname{proj}_{H}(e_{b})$$

Rauzy fractals

 $\mathcal{R}(\theta)$ is a compact subset of \mathbb{R}^{d-1} equal to closure of its interior. Always contains an open ball. Not always simply connected or connected.

 $\mathcal{R}(heta)$ is the unique attractor of a GIFS that you can read off from heta

Twisted tribonacci:

$$\hat{\tau}$$
: $a \mapsto ba$, $b \mapsto ac$, $c \mapsto a$

$$\mathcal{R}(\tau) = \mathcal{R}_a \cup \mathcal{R}_b \cup \mathcal{R}_c$$

$$\mathcal{R}_a = \frac{h(\mathcal{R}_a)}{h(\mathcal{R}_a)} + \mathbf{v}_b \cup h(\mathcal{R}_b) \cup h(\mathcal{R}_c), \quad \mathcal{R}_b = \frac{h(\mathcal{R}_a)}{h(\mathcal{R}_a)}, \quad \mathcal{R}_c = h(\mathcal{R}_b) + \mathbf{v}_a$$

$$h := \operatorname{proj}_{H}(M), \mathbf{v}_{a} := \operatorname{proj}_{H}(e_{a}), \mathbf{v}_{b} := \operatorname{proj}_{H}(e_{b})$$

The Pisot Conjecture

The *Pisot conjecture* says that for all irreducible Pisot θ , the Rauzy fractal $\mathcal{R}(\theta)$ tiles the plane with translation group

$$\mathcal{L} = \{ n(\mathbf{v}_a - \mathbf{v}_b) + m(\mathbf{v}_a - \mathbf{v}_c) \mid (n, m) \in \mathbb{Z}^2 \}$$

So $\bigcup_{\mathbf{v}\in\mathcal{L}} \mathcal{R}(\theta) + \mathbf{v}$ is a tiling of H

Equivalently, the orbit closure subshift $X_{\theta} \coloneqq \overline{\{\sigma^n(w) \mid n \in \mathbb{N}\}}$ factors onto the torus H/\mathcal{L} almost everywhere one-to-one

The Pisot Conjecture

The *Pisot conjecture* says that for all irreducible Pisot θ , the Rauzy fractal $\mathcal{R}(\theta)$ tiles the plane with translation group

$$\mathcal{L} = \{ n(\mathbf{v}_a - \mathbf{v}_b) + m(\mathbf{v}_a - \mathbf{v}_c) \mid (n, m) \in \mathbb{Z}^2 \}$$

So $\bigcup_{\mathbf{v}\in\mathcal{L}}\mathcal{R}(\theta)+\mathbf{v}$ is a tiling of H

Equivalently, the orbit closure subshift $X_{\theta} \coloneqq \overline{\{\sigma^n(w) \mid n \in \mathbb{N}\}}$ factors onto the torus H/\mathcal{L} almost everywhere one-to-one

It is known that $\bigcup_{\mathbf{v}\in\mathcal{L}}\mathcal{R}(\theta)+\mathbf{v}$ is a k-fold multitiling of H so the difficulty is in showing that k=1

The conjecture was solved for $\mathcal{A} = \{a, b\}$ by [Barge–Diamond '02] and [Hollander–Solomyak '03]

Dan Rust Random subs and Rauzy fractals 7/7/2025 12 / 31

In 2016, Barge proved an important case of the conjecture, including for all β -substitutions (substitutions that code IETs of the form $x \mapsto \beta x - \lfloor \beta x \rfloor$)

A Barge substitution is a substitution θ of the form

$$\theta \colon \left\{ \begin{array}{l} a \mapsto x \cdots \rho(a) \\ b \mapsto x \cdots \rho(b) \\ c \mapsto x \cdots \rho(c) \end{array} \right.$$

where $x \in \mathcal{A}$ is a fixed letter and ρ is permutation on \mathcal{A}

Barge proved that every irreducible Pisot Barge substitution satisfies the Pisot conjecture

Observation: For any primitive substitution θ , there exists a Barge cousin $\hat{\theta}$, which is Barge, and for which $M_{\theta}^k = M_{\hat{\theta}}$ for some $k \geq 1$

Ex: Tribonacci is a Barge cousin of Twisted Tribonacci

Observation: For any primitive substitution θ , there exists a Barge cousin $\hat{\theta}$, which is Barge, and for which $M_{\theta}^k = M_{\hat{\theta}}$ for some $k \geq 1$

Ex: Tribonacci is a Barge cousin of Twisted Tribonacci

Our Motivation

Maybe there's a way of proving the Pisot conjecture for θ by using the fact that $\hat{\theta}$ satisfies the conjecture and then 'transferring' the tiling property across...

Observation: For any primitive substitution θ , there exists a Barge cousin $\hat{\theta}$, which is Barge, and for which $M_{\theta}^k = M_{\hat{\theta}}$ for some $k \geq 1$

Ex: Tribonacci is a Barge cousin of Twisted Tribonacci

Our Motivation

Maybe there's a way of proving the Pisot conjecture for θ by using the fact that $\hat{\theta}$ satisfies the conjecture and then 'transferring' the tiling property across...

Spoiler: We haven't proven the Pisot conjecture...

Random substitutions

"Letters have choices for how they are substituted."

Random substitutions

"Letters have choices for how they are substituted."

Locally mix tribonacci with twisted tribonacci (Random tribonacci)

$$\tau_{\mathbf{p}} \colon \left\{ \begin{array}{ll} a & \mapsto & \{ab,ba\} & \quad \text{with probabilities } (p,1-p) \\ b & \mapsto & \{ac\} \\ c & \mapsto & \{a\} \end{array} \right.$$

Choices are independent for each letter:

Random substitutions

"Letters have choices for how they are substituted."

Locally mix tribonacci with twisted tribonacci (Random tribonacci)

$$\tau_{\mathbf{p}} \colon \left\{ \begin{array}{ll} a & \mapsto & \{ab,ba\} & \quad \text{with probabilities } (p,1-p) \\ b & \mapsto & \{ac\} \\ c & \mapsto & \{a\} \end{array} \right.$$

Choices are independent for each letter:

$$a\mapsto ab\mapsto \overbrace{\ \ ba\ \ ac\mapsto ac\ \ ab\ \ \ ba}^{\tau_p(a)} \underbrace{\ \ ba\ \ ac\mapsto baabaacacabba}_{\ \ ba\ \ ab} \mapsto baabaacacabba \mapsto \cdots$$

$$\mathcal{L}_{\tau_{\boldsymbol{D}}} := \{ u \mid u \triangleleft v \in \tau_{\boldsymbol{D}}^{k}(a), \ k \geq 0, \ a \in \mathcal{A} \}$$

$$X_{\tau_{\textbf{p}}} := \{x \mid u \triangleleft x \implies u \in \mathcal{L}_{\tau_{\textbf{p}}}\}$$

Basic properties

Thm. [R.-Spindeler '20]

The following properties hold for X_{ϑ_p} for primitive ϑ_p :

- Cantor set
- Either no periodic points or periodic points are dense
- Uncountably many minimal components
- Uncountably many ergodic prob. measure
- Canonical measure $\mu_{\mathbf{p}}$ induced by probabilities \mathbf{p} (shown to be ergodic [Gohlke–Spindeler '20])
- Almost all orbits are dense
- Positive entropy

Further entropy results: topological entropy [Gohlke '20], [Mitchell '23]; measure theoretic entropy [Gohlke–Mitchell–R.–Samuel '23]

A random substitution is compatible if

$$u, v \in \vartheta_{\mathbf{p}}(a) \implies [u] = [v]$$

Ensures we have well-defined **constant** substitution matrix $M_{\vartheta_{\mathbf{p}}}$

Allows us to 'locally mix' two substitutions $heta,\hat{ heta}$ for which $M_{ heta}=M_{\hat{ heta}}$

Basic properties

Let $\vartheta_{\mathbf{p}}$ be a primitive, compatible random substitution Write $\lambda_{PF}>|\lambda_2|\geq\cdots\geq|\lambda_d|$

Thm. [Miro-R.-Sadun-Tadeo '20]

- If $|\lambda_2| < 1$, then X_{ϑ_p} is C-balanced.
- If $|\lambda_2| > 1$, then X_{ϑ_p} is not C-balanced.
- If $|\lambda_2| = 1$, then both can happen (i.e., "M is not enough").

Basic properties

Let $\vartheta_{\mathbf{p}}$ be a primitive, compatible random substitution Write $\lambda_{PF}>|\lambda_2|\geq\cdots\geq|\lambda_d|$

Thm. [Miro-R.-Sadun-Tadeo '20]

- If $|\lambda_2| < 1$, then $X_{\vartheta_{\mathbf{p}}}$ is *C*-balanced.
- If $|\lambda_2| > 1$, then X_{ϑ_p} is not C-balanced.
- If $|\lambda_2|=1$, then both can happen (i.e., "M is not enough").

Open: Classify C-balancedness when $|\lambda_2|=1$. In deterministic setting, this is solved, but quite complicated [Adamczewski '03]

Therefore Rauzy fractals exist for irreducible Pisot random substitutions and it turns out they are also attractors of a GIFS

Random tribonacci:

$$\tau_{\textbf{p}} \colon \textit{a} \mapsto \{\textit{ab}, \textit{ba}\}, \; \textit{b} \mapsto \{\textit{ac}\}, \; \textit{c} \mapsto \{\textit{a}\}$$

$$\mathcal{R}(\tau_{\mathbf{p}}) = \mathcal{R}_a \cup \mathcal{R}_b \cup \mathcal{R}_c$$

$$\mathcal{R}_{a} = h(\mathcal{R}_{a}) \cup h(\mathcal{R}_{a}) + \mathbf{v}_{b} \cup h(\mathcal{R}_{b}) \cup h(\mathcal{R}_{c}),$$

$$\mathcal{R}_b = h(\mathcal{R}_a) \cup h(\mathcal{R}_a) + \mathbf{v}_a,$$

$$\mathcal{R}_c = h(\mathcal{R}_b) + \mathbf{v}_a$$

trib.

twisted trib.

both

 $\tau_{\boldsymbol{p}}\colon a\mapsto \{ab,ba\},\ b\mapsto \{ac\},\ c\mapsto \{a\}$

 $\tau_{\textbf{p}} \colon \textit{a} \mapsto \{\textit{ab}, \textit{ba}\}, \ \textit{b} \mapsto \{\textit{ac}\}, \ \textit{c} \mapsto \{\textit{a}\}$

 $\tilde{\tau}_{\textbf{p}} \colon a \mapsto \{ab\}, \ b \mapsto \{ac, ca\}, \ c \mapsto \{a\}$

 $\tilde{\tau}_{\mathbf{p}} \colon a \mapsto \{ab\}, \ b \mapsto \{ac, ca\}, \ c \mapsto \{a\}$

The Mother Substitution

 $\mathcal{R}(\vartheta_{\mathbf{p}})$ is independent of the probabilities \mathbf{p} (not surprising, almost every element of X_{ϑ} is dense w.r.t. measure induced by \mathbf{p})

In fact, $\mathcal{R}(\vartheta_{\mathbf{p}})$ is the Rauzy fractal for a deterministic substitution, but on a larger alphabet (and necessarily reducible)

- We call it the *mother substitution* (useful for other things too)
- Found by using a modified overlap algorithm

The Mother Substitution

 $\mathcal{R}(\vartheta_{\mathbf{p}})$ is independent of the probabilities \mathbf{p} (not surprising, almost every element of X_{ϑ} is dense w.r.t. measure induced by \mathbf{p})

In fact, $\mathcal{R}(\vartheta_{\mathbf{p}})$ is the Rauzy fractal for a deterministic substitution, but on a larger alphabet (and necessarily reducible)

- We call it the *mother substitution* (useful for other things too)
- Found by using a modified overlap algorithm

Ex: For the random Fibonacci substitution

 $\vartheta_{\mathbf{p}} \colon a \mapsto \{ab, ba\}, \ b \mapsto \{a\}, \text{ the mother substitution is}$

$$A \mapsto AB, \ \tilde{A} \mapsto B\tilde{A},$$

 $B \mapsto C, \ C \mapsto DEF,$
 $D \mapsto C, \ E \mapsto B, \ F \mapsto C$

4 D > 4 D > 4 D > 4 D > 3 P 9 Q P

Rauzy Measures for Random Substitutions

As $\mathcal{R}(\vartheta_{\mathbf{p}})$ is independent of the probabilities \mathbf{p} , suggests we're not looking at the right object

Instead, let's weight lattice points by taking the *expected staircase*Now take a limit of normalised projections of longer and longer segments
Call this the *Rauzy measure* ν_{ϑ_n}

Rauzy Measures for Random Substitutions

As $\mathcal{R}(\vartheta_{\mathbf{p}})$ is independent of the probabilities \mathbf{p} , suggests we're not looking at the right object

Instead, let's weight lattice points by taking the *expected staircase*Now take a limit of normalised projections of longer and longer segments
Call this the *Rauzy measure* ν_{ϑ_n}

Thm. [GMRS '24] For a.e. $w \in X_{\vartheta}$, the Rauzy measure is equal to

$$\tilde{\nu}_{\vartheta_{\mathbf{p}}} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \delta_{\mathsf{proj}_{H}(w_{[0,i]})}$$

where the limit is taken in the weak topology

4□ > 4□ > 4 = > 4 = > = 9 < ○</p>

What this means is that we can experimentally generate long words \boldsymbol{w} and visualise the density of the measure

What this means is that we can experimentally generate long words w and visualise the density of the measure As a reminder

$$\tau \colon \left\{ \begin{array}{ll} a & \mapsto & ab \\ b & \mapsto & ac \\ c & \mapsto & a \end{array} \right.$$

$$\tilde{\tau} : \left\{ \begin{array}{ll} a & \mapsto & ba \\ b & \mapsto & ac \\ c & \mapsto & a \end{array} \right.$$

Tribonacci

Twisted Tribonaci

(ロ) (御) (き) (き) (き) き め(で)

What this means is that we can experimentally generate long words w and visualise the density of the measure As a reminder

$$\tau \colon \left\{ \begin{array}{ll} a & \mapsto & ab \\ b & \mapsto & ac \\ c & \mapsto & a \end{array} \right. \qquad \qquad \tilde{\tau} \colon \left\{ \begin{array}{ll} a & \mapsto & ba \\ b & \mapsto & ac \\ c & \mapsto & a \end{array} \right.$$

Random tribonacci

$$\tau_{\mathbf{p}} \colon \left\{ \begin{array}{ll} a & \mapsto & \{ab,ba\} & \quad \text{with probabilities } (p,1-p) \\ b & \mapsto & \{ac\} \\ c & \mapsto & \{a\} \end{array} \right.$$

- Topologically, $\mathcal{R}(\vartheta_{\mathbf{p}})$ does not depend on $p \in (0,1)$
- Difference in images therefore indicates different densities of Rauzy measures $\nu_{\vartheta_{\mathbf{p}}}$ as p changes

Thm. [GMRS '24] The function $\mathbf{p} \mapsto \nu_{\vartheta_{\mathbf{p}}}$ is continuous with respect to the Monge—Kantorovich metric

Thm. [GMRS '24] The Rauzy measure is the unique attractor of a natural weighted GIFS that is analogous to the GIFS for generating Rauzy fractals but with edges weights corresponding to generating probabilities

Short S-adic detour

- $S = (\theta_0, \dots, \theta_{k-1})$ irreducible Pisot substitutions with same matrix
- $\vartheta_{\mathbf{p}}$ local mixture of S as random substitution
- X_{S,d} S-adic system
- $\nu_{\mathcal{S},d}$ associated Rauzy measure $(=\mathrm{Leb}|_{\mathcal{R}_{\mathcal{S},d}})$
- $\rho_{\mathbf{p}}$ Bernouilli measure on $\Sigma_k = \{0, \dots, k-1\}^{\mathbb{Z}}$

Thm. [GMRS '24] The expectation of the Rauzy measures $\nu_{S,d}$ w.r.t $\rho_{\mathbf{p}}$ is the Rauzy measure $\nu_{\vartheta_{\mathbf{p}}}$

$$\mathbb{E}_{\rho_{\mathbf{p}}}[\nu_{\mathcal{S},d}] = \nu_{\vartheta_{\mathbf{p}}}$$

Different Perspectives

Summary of all the different ways to view ν_{ϑ_p} :

- Projected 'average staircase'
- Normalised projected staircase for generic point
- Attractor of a weighted GIFS
- Average of S-adic Rauzy fractals
- (not mentioned here) pullback of factor map to MEGF

Tempting to frame in the context of the Pisot conjecture

- Naive approach:
 - Construct $\hat{\theta}$, the Barge cousin of θ
 - Construct random substitution ϑ local mixture of θ^k and $\hat{\theta}$
 - We know that $\mathcal{R}(\hat{ heta})$ tiles the plane [Barge, '16]
 - We also know that $\nu_{\theta} = \mathrm{Leb}|_{\mathcal{R}(\theta)}$ and $\nu_{\hat{\theta}} = \mathrm{Leb}|_{\mathcal{R}(\hat{\theta})}$ are uniformly distributed on the respective Rauzy fractals
 - Show tilability of $\nu_{\vartheta_{\mathbf{p}}}$ is invariant as p ranges smoothly from 1 to 0
 - Conclude that $\mathcal{R}(\theta^k) = \mathcal{R}(\theta)$ tiles the plane

Tempting to frame in the context of the Pisot conjecture

- Naive approach:
 - Construct $\hat{\theta}$, the Barge cousin of θ
 - Construct random substitution $\vartheta_{\mathbf{p}}$ local mixture of θ^k and $\hat{\theta}$
 - We know that $\mathcal{R}(\hat{ heta})$ tiles the plane [Barge, '16]
 - We also know that $\nu_{\theta} = \mathrm{Leb}|_{\mathcal{R}(\theta)}$ and $\nu_{\hat{\theta}} = \mathrm{Leb}|_{\mathcal{R}(\hat{\theta})}$ are uniformly distributed on the respective Rauzy fractals
 - Show tilability of $u_{\vartheta_{\mathbf{p}}}$ is invariant as p ranges smoothly from 1 to 0
 - Conclude that $\mathcal{R}(\theta^k) = \mathcal{R}(\theta)$ tiles the plane

Show tilability of $\nu_{\vartheta_{\mathbf{p}}}$ is invariant as p ranges smoothly from 1 to 0

What do we mean by this?

Show tilability of $\nu_{\vartheta_{\mathbf{p}}}$ is invariant as p ranges smoothly from 1 to 0

What do we mean by this?

After a suitable normalisation by the density D of the projected sublattice $\mathcal L$ in H, we should have that $\nu_{\vartheta_{\mathbf p}}$ 'tiles' the Lebesgue measure on H

Show tilability of $\nu_{\vartheta_{\mathbf{p}}}$ is invariant as p ranges smoothly from 1 to 0

What do we mean by this?

After a suitable normalisation by the density D of the projected sublattice ${\mathcal L}$ in H, we should have that $\nu_{\vartheta_{\mathbf n}}$ 'tiles' the Lebesgue measure on H

That's exactly what we get

Thm. [GMRS '24] Let ϑ be a Pisot random substitution

$$\sum_{\mathbf{v} \in \mathcal{L}} \nu_{\vartheta_{\mathbf{p}}} + \mathbf{v} = D \operatorname{Leb},$$

where D is a uniform constant independent of \mathbf{p}

As a corollary, this implies that ν_{ϑ_n} is absolutely continuous w.r.t. Lebesgue

Dan Rust

The problem is that even if the Rauzy measure tiles ${\rm Leb},$ we don't know the supports of the individual measures

We need better control on the supports of the Rauzy measures

Unfortunately, the supports are not well behaved — three regimes

$$p=0, \quad 0$$

and the jump from one to another is strictly discontinuous because $\operatorname{supp}\nu_\theta\subsetneq\operatorname{supp}\nu_{\vartheta_{\mathbf{p}}}$

But we can say something!

As $Leb(\mathcal{R}(\theta)) \in \mathbb{N}$ and $Leb(\mathcal{R}(\theta)) \leq Leb(\mathcal{R}(\vartheta))$, then we have the following:

Thm. [GMRS '24] Let ϑ be a Pisot random substitution such that $\operatorname{Leb}(\mathcal{R}(\vartheta)) < 2$. Then for all marginals θ (in fact any S-adic) of ϑ , we have $\operatorname{Leb}(\mathcal{R}(\theta)) = 1$ and so θ satisfies the Pisot conjecture.

Condition doesn't always hold, but examples exist

Ex:
$$\vartheta$$
: $a \mapsto \{aab\}, b \mapsto \{ab, ba\}$ $\mathcal{R}(\vartheta) = [-\tau^{-1}, 1]$

